Zheng Xueli, Paul Subhechchha, Moghimi Lauren, Wang Yifan, Vilá Rafael A, Zhang Fan, Gao Xin, Deng Junjing, Jiang Yi, Xiao Xin, Wu Chaolumen, Greenburg Louisa C, Yang Yufei, Cui Yi, Vailionis Arturas, Kuzmenko Ivan, Llavsky Jan, Yin Yadong, Cui Yi, Dresselhaus-Marais Leora
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2305097120. doi: 10.1073/pnas.2305097120. Epub 2023 Oct 17.
Steelmaking contributes 8% to the total CO emissions globally, primarily due to coal-based iron ore reduction. Clean hydrogen-based ironmaking has variable performance because the dominant gas-solid reduction mechanism is set by the defects and pores inside the mm- to nm-sized oxide particles that change significantly as the reaction progresses. While these governing dynamics are essential to establish continuous flow of iron and its ores through reactors, the direct link between agglomeration and chemistry is still contested due to missing measurements. In this work, we directly measure the connection between chemistry and agglomeration in the smallest iron oxides relevant to magnetite ores. Using synthesized spherical 10-nm magnetite particles reacting in H, we resolve the formation and consumption of wüstite (FeO)-the step most commonly attributed to whiskering. Using X-ray diffraction, we resolve crystallographic anisotropy in the rate of the initial reaction. Complementary imaging demonstrated how the particles self-assemble, subsequently react, and grow into elongated "whisker" structures. Our insights into how morphologically uniform iron oxide particles react and agglomerate in H reduction enable future size-dependent models to effectively describe the multiscale aspects of iron ore reduction.
钢铁生产占全球二氧化碳排放总量的8%,主要原因是基于煤炭的铁矿石还原过程。基于清洁氢气的炼铁性能具有多变性,这是因为主要的气固还原机制由毫米级至纳米级氧化物颗粒内部的缺陷和孔隙决定,这些缺陷和孔隙会随着反应的进行而发生显著变化。虽然这些主导动力学对于在反应器中建立铁及其矿石的连续流动至关重要,但由于缺乏测量数据,团聚与化学之间的直接联系仍存在争议。在这项工作中,我们直接测量了与磁铁矿矿石相关的最小氧化铁中化学与团聚之间的联系。使用在氢气中反应的合成球形10纳米磁铁矿颗粒,我们解析了浮氏体(FeO)的形成和消耗过程——这一步骤通常被认为是晶须生长的原因。通过X射线衍射,我们解析了初始反应速率中的晶体学各向异性。补充成像展示了颗粒如何自组装、随后反应并生长成细长的“晶须”结构。我们对形态均匀的氧化铁颗粒在氢气还原过程中如何反应和团聚的深入了解,使未来基于尺寸的模型能够有效地描述铁矿石还原的多尺度方面。