Suppr超能文献

量子模拟非阿贝尔杨单极子的第二陈数。

Second Chern number of a quantum-simulated non-Abelian Yang monopole.

机构信息

Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8424, USA.

出版信息

Science. 2018 Jun 29;360(6396):1429-1434. doi: 10.1126/science.aam9031.

Abstract

Topological order is often quantified in terms of Chern numbers, each of which classifies a topological singularity. Here, inspired by concepts from high-energy physics, we use quantum simulation based on the spin degrees of freedom of atomic Bose-Einstein condensates to characterize a singularity present in five-dimensional non-Abelian gauge theories-a Yang monopole. We quantify the monopole in terms of Chern numbers measured on enclosing manifolds: Whereas the well-known first Chern number vanishes, the second Chern number does not. By displacing the manifold, we induce and observe a topological transition, where the topology of the manifold changes to a trivial state.

摘要

拓扑序通常用陈数来量化,每个陈数都对拓扑奇点进行分类。在这里,我们受到高能物理概念的启发,利用基于原子玻色-爱因斯坦凝聚体自旋自由度的量子模拟来描述五维非阿贝尔规范理论中的一种奇点——杨磁单极子。我们用量子陈数来量化磁单极子,这些陈数是在封闭流形上测量得到的:尽管著名的第一陈数为零,但第二陈数不为零。通过对流形进行位移,我们诱导并观察到拓扑转变,其中流形的拓扑结构变为平凡状态。

相似文献

1
Second Chern number of a quantum-simulated non-Abelian Yang monopole.
Science. 2018 Jun 29;360(6396):1429-1434. doi: 10.1126/science.aam9031.
2
Gauge Field Induced Chiral Zero Mode in Five-Dimensional Yang Monopole Metamaterials.
Phys Rev Lett. 2023 Jun 16;130(24):243801. doi: 10.1103/PhysRevLett.130.243801.
3
Measuring the Second Chern Number from Nonadiabatic Effects.
Phys Rev Lett. 2016 Jul 1;117(1):015301. doi: 10.1103/PhysRevLett.117.015301. Epub 2016 Jun 30.
4
Monopole-antimonopole: interaction, scattering and creation.
Philos Trans A Math Phys Eng Sci. 2019 Dec 30;377(2161):20190143. doi: 10.1098/rsta.2019.0143. Epub 2019 Nov 11.
5
Experimental Observation of Tensor Monopoles with a Superconducting Qudit.
Phys Rev Lett. 2021 Jan 8;126(1):017702. doi: 10.1103/PhysRevLett.126.017702.
6
Non-Abelian magnetic monopole in a Bose-Einstein condensate.
Phys Rev Lett. 2009 Feb 27;102(8):080403. doi: 10.1103/PhysRevLett.102.080403. Epub 2009 Feb 26.
7
Hyperbolic band topology with non-trivial second Chern numbers.
Nat Commun. 2023 Feb 25;14(1):1083. doi: 10.1038/s41467-023-36767-8.
8
Measurement of Spin Chern Numbers in Quantum Simulated Topological Insulators.
Phys Rev Lett. 2021 Sep 24;127(13):136802. doi: 10.1103/PhysRevLett.127.136802.
10
Topological Phononic Fiber of Second Spin-Chern Number.
Phys Rev Lett. 2024 Nov 29;133(22):226602. doi: 10.1103/PhysRevLett.133.226602.

引用本文的文献

2
Observation of two-dimensional time-reversal broken non-Abelian topological states.
Nat Commun. 2024 Nov 20;15(1):10036. doi: 10.1038/s41467-024-54403-x.
3
Observation of vortex-string chiral modes in metamaterials.
Nat Commun. 2024 Mar 14;15(1):2332. doi: 10.1038/s41467-024-46641-w.
4
Hyperbolic band topology with non-trivial second Chern numbers.
Nat Commun. 2023 Feb 25;14(1):1083. doi: 10.1038/s41467-023-36767-8.
5
Realization of a deeply subwavelength adiabatic optical lattice.
Phys Rev Res. 2020;2(1). doi: 10.1103/physrevresearch.2.013149.
6
Non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly pairs.
Light Sci Appl. 2020 Oct 19;9:177. doi: 10.1038/s41377-020-00384-7. eCollection 2020.
7
Circuit implementation of a four-dimensional topological insulator.
Nat Commun. 2020 May 12;11(1):2356. doi: 10.1038/s41467-020-15940-3.
8
Dualities and non-Abelian mechanics.
Nature. 2020 Jan;577(7792):636-640. doi: 10.1038/s41586-020-1932-6. Epub 2020 Jan 20.
9
Topological one-way fiber of second Chern number.
Nat Commun. 2018 Dec 19;9(1):5384. doi: 10.1038/s41467-018-07817-3.

本文引用的文献

1
Measuring the Second Chern Number from Nonadiabatic Effects.
Phys Rev Lett. 2016 Jul 1;117(1):015301. doi: 10.1103/PhysRevLett.117.015301. Epub 2016 Jun 30.
2
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
Nature. 2016 Jun 23;534(7608):516-9. doi: 10.1038/nature18318.
3
Geometrical Pumping with a Bose-Einstein Condensate.
Phys Rev Lett. 2016 May 20;116(20):200402. doi: 10.1103/PhysRevLett.116.200402.
4
Bloch state tomography using Wilson lines.
Science. 2016 May 27;352(6289):1094-7. doi: 10.1126/science.aad5812.
5
Four-Dimensional Quantum Hall Effect with Ultracold Atoms.
Phys Rev Lett. 2015 Nov 6;115(19):195303. doi: 10.1103/PhysRevLett.115.195303. Epub 2015 Nov 3.
6
Observation of topological transitions in interacting quantum circuits.
Nature. 2014 Nov 13;515(7526):241-4. doi: 10.1038/nature13891.
7
Experimental realization of the topological Haldane model with ultracold fermions.
Nature. 2014 Nov 13;515(7526):237-40. doi: 10.1038/nature13915.
8
Observation of Dirac monopoles in a synthetic magnetic field.
Nature. 2014 Jan 30;505(7485):657-60. doi: 10.1038/nature12954.
9
Four-dimensional quantum Hall effect in a two-dimensional quasicrystal.
Phys Rev Lett. 2013 Nov 27;111(22):226401. doi: 10.1103/PhysRevLett.111.226401. Epub 2013 Nov 25.
10
Non-abelian gauge fields and topological insulators in shaken optical lattices.
Phys Rev Lett. 2012 Oct 5;109(14):145301. doi: 10.1103/PhysRevLett.109.145301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验