Department of Chemistry, Ludwig-Maximilians-Universität München and Munich Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377, München, Germany.
Nat Commun. 2018 Jun 28;9(1):2510. doi: 10.1038/s41467-018-04928-9.
Photoisomerization reactions are quintessential processes driving molecular machines and motors, govern smart materials, catalytic processes, and photopharmacology, and lie at the heart of vision, phototaxis, or vitamin production. Despite this plethora of applications fundamental photoisomerization mechanisms are not well understood at present. The famous hula-twist motion-a coupled single and double-bond rotation-was proposed to explain proficient photoswitching in restricted environments but fast thermal follow-up reactions hamper identification of primary photo products. Herein we describe an asymmetric chromophore possessing four geometrically distinct diastereomeric states that do not interconvert thermally and can be crystallized separately. Employing this molecular setup direct and unequivocal evidence for the hula-twist photoreaction and for photoinduced single-bond rotation is obtained. The influences of the surrounding medium and temperature are quantified and used to favor unusual photoreactions. Based on our findings molecular engineers will be able to implement photo control of complex molecular motions more consciously.
光致异构反应是驱动分子机器和马达的基本过程,控制着智能材料、催化过程和光药理学,也是视觉、趋光性或维生素生产的核心。尽管有如此多的应用,但目前基本的光致异构机制还没有得到很好的理解。著名的呼啦-扭转运动——耦合的单键和双键旋转——被提出用来解释在受限环境中高效的光致开关反应,但快速的热后续反应阻碍了对初始光产物的识别。在这里,我们描述了一种具有四个几何上不同的非对映异构体状态的不对称生色团,这些状态不会在热条件下相互转化,并且可以分别结晶。利用这种分子结构,我们获得了呼啦-扭转光反应和光诱导单键旋转的直接且明确的证据。定量研究了周围介质和温度的影响,并利用这些影响来促进不寻常的光反应。基于我们的发现,分子工程师将能够更有意识地实施对复杂分子运动的光控制。