Suppr超能文献

体内追踪神经嵴细胞周期进程。

Tracking neural crest cell cycle progression in vivo.

作者信息

Rajan Sriivatsan G, Gallik Kristin L, Monaghan James R, Uribe Rosa A, Bronner Marianne E, Saxena Ankur

机构信息

Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607.

Department of Biology, Northeastern University, Boston, Massachusetts, 02131.

出版信息

Genesis. 2018 Jun;56(6-7):e23214. doi: 10.1002/dvg.23214. Epub 2018 Jun 28.

Abstract

Analysis of cell cycle entry/exit and progression can provide fundamental insights into stem cell propagation, maintenance, and differentiation. The neural crest is a unique stem cell population in vertebrate embryos that undergoes long-distance collective migration and differentiation into a wide variety of derivatives. Using traditional techniques such as immunohistochemistry to track cell cycle changes in such a dynamic population is challenging, as static time points provide an incomplete spatiotemporal picture. In contrast, the fluorescent, ubiquitination-based cell cycle indicator (Fucci) system provides in vivo readouts of cell cycle progression and has been previously adapted for use in zebrafish. The most commonly used Fucci systems are ubiquitously expressed, making tracking of a specific cell population challenging. Therefore, we generated a transgenic zebrafish line, Tg(-4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)), in which the Fucci system is specifically expressed in delaminating and migrating neural crest cells. Here, we demonstrate validation of this new tool and its use in live high-resolution tracking of cell cycle progression in the neural crest and derivative populations.

摘要

对细胞周期进入/退出及进程的分析能够为干细胞增殖、维持和分化提供基本的见解。神经嵴是脊椎动物胚胎中独特的干细胞群体,会经历长距离集体迁移并分化为多种衍生物。使用免疫组织化学等传统技术来追踪如此动态群体中的细胞周期变化具有挑战性,因为静态时间点提供的时空图像并不完整。相比之下,基于荧光泛素化的细胞周期指示剂(Fucci)系统能够提供细胞周期进程的体内读数,并且此前已被适配用于斑马鱼。最常用的Fucci系统是广泛表达的,这使得追踪特定细胞群体具有挑战性。因此,我们构建了一个转基因斑马鱼品系Tg(-4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)),其中Fucci系统在正在分层和迁移的神经嵴细胞中特异性表达。在此,我们展示了这个新工具的验证及其在对神经嵴及其衍生物群体的细胞周期进程进行实时高分辨率追踪中的应用。

相似文献

1
Tracking neural crest cell cycle progression in vivo.
Genesis. 2018 Jun;56(6-7):e23214. doi: 10.1002/dvg.23214. Epub 2018 Jun 28.
2
Live image profiling of neural crest lineages in zebrafish transgenic lines.
Mol Cells. 2013 Mar;35(3):255-60. doi: 10.1007/s10059-013-0001-5. Epub 2013 Feb 26.
4
Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.
J Craniofac Surg. 2012 Sep;23(5):1333-7. doi: 10.1097/SCS.0b013e318260f20b.
6
Neural crest development: insights from the zebrafish.
Dev Dyn. 2020 Jan;249(1):88-111. doi: 10.1002/dvdy.122. Epub 2019 Oct 22.
7
Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S202-S208. doi: 10.1016/j.ydbio.2018.02.020. Epub 2018 Mar 6.
8
Characterization of cultured multipotent zebrafish neural crest cells.
Exp Biol Med (Maywood). 2014 Feb;239(2):159-68. doi: 10.1177/1535370213513997. Epub 2013 Dec 10.
9
A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification.
Dev Biol. 2013 Feb 1;374(1):1-11. doi: 10.1016/j.ydbio.2012.11.035. Epub 2012 Dec 8.
10
Quantitative analysis of cell migration using optical flow.
PLoS One. 2013 Jul 31;8(7):e69574. doi: 10.1371/journal.pone.0069574. Print 2013.

引用本文的文献

1
Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales.
Biochem J. 2023 Oct 31;480(20):1693-1717. doi: 10.1042/BCJ20220223.
2
Scents from the past: Lineage history and terminal identity in the olfactory system.
Nat Sci (Weinh). 2022 Oct;2(4). doi: 10.1002/ntls.20220037. Epub 2022 Aug 7.
3
Time to go: neural crest cell epithelial-to-mesenchymal transition.
Development. 2022 Aug 1;149(15). doi: 10.1242/dev.200712. Epub 2022 Jul 29.
4
Injection of human neuroblastoma cells into neural crest streams in live zebrafish embryos.
STAR Protoc. 2022 May 9;3(2):101380. doi: 10.1016/j.xpro.2022.101380. eCollection 2022 Jun 17.
8
Neuroblastoma differentiation in vivo excludes cranial tumors.
Dev Cell. 2021 Oct 11;56(19):2752-2764.e6. doi: 10.1016/j.devcel.2021.09.014. Epub 2021 Oct 4.
9
Notch signaling mediates olfactory multiciliated cell specification.
Cells Dev. 2021 Dec;168:203715. doi: 10.1016/j.cdev.2021.203715. Epub 2021 Jul 2.

本文引用的文献

1
Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.
Dev Biol. 2018 Jan 1;433(1):17-32. doi: 10.1016/j.ydbio.2017.10.021. Epub 2017 Nov 3.
2
Neural crest and cancer: Divergent travelers on similar paths.
Mech Dev. 2017 Dec;148:89-99. doi: 10.1016/j.mod.2017.08.002. Epub 2017 Sep 6.
5
Different neural crest populations exhibit diverse proliferative behaviors.
Dev Neurobiol. 2015 Mar;75(3):287-301. doi: 10.1002/dneu.22229. Epub 2014 Sep 15.
6
A novel HoxB cluster protein expressed in the hindbrain and pharyngeal arches.
Genesis. 2014 Oct;52(10):858-63. doi: 10.1002/dvg.22806. Epub 2014 Aug 23.
8
Cdc25 and the importance of G2 control: insights from developmental biology.
Cell Cycle. 2014;13(14):2165-71. doi: 10.4161/cc.29537. Epub 2014 Jun 10.
9
The neural crest cell cycle is related to phases of migration in the head.
Development. 2014 Mar;141(5):1095-103. doi: 10.1242/dev.098855.
10
Mmp17b is essential for proper neural crest cell migration in vivo.
PLoS One. 2013 Oct 1;8(10):e76484. doi: 10.1371/journal.pone.0076484. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验