Chen Zhipeng, Mou Kaiwen, Yao Shunyu, Liu Licheng
CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, PR China.
University of Chinese Academy of Sciences, Beijing, 100049, PR China.
ChemSusChem. 2018 Sep 11;11(17):2944-2952. doi: 10.1002/cssc.201800925. Epub 2018 Jul 26.
Electrochemical reduction of CO to value-added chemicals by using renewable electricity offers a promising strategy to deal with rising CO emission and the energy crisis. Single-site zinc-coordinated nitrogen-codoped graphene (Zn-N-G) catalyzes the electrochemical reduction of CO to CO. The Zn-N-G catalyst exhibits excellent intrinsic activity toward CO reduction, reaching a faradaic efficiency of 91 % for CO production at a low overpotential of 0.39 V. X-ray absorption fine structure and X-ray photoelectron spectroscopy both confirm the presence of isolated Zn-N moieties, which act as the key active sites for CO formation. DFT calculations reveal the origin of enhanced activity for CO reduction on Zn-N-G catalysts. This work provide further understanding of the active centers on transition metal-nitrogen-carbon (M-N-C) catalysts for electrochemical reduction of CO to CO.
利用可再生电力将二氧化碳电化学还原为高附加值化学品,为应对不断增加的二氧化碳排放和能源危机提供了一种有前景的策略。单原子锌配位氮共掺杂石墨烯(Zn-N-G)催化二氧化碳电化学还原为一氧化碳。Zn-N-G催化剂对一氧化碳还原表现出优异的本征活性,在0.39 V的低过电位下,一氧化碳生成的法拉第效率达到91%。X射线吸收精细结构和X射线光电子能谱均证实了孤立的Zn-N部分的存在,其作为一氧化碳形成的关键活性位点。密度泛函理论计算揭示了Zn-N-G催化剂上一氧化碳还原活性增强的起源。这项工作进一步加深了对过渡金属-氮-碳(M-N-C)催化剂上用于将二氧化碳电化学还原为一氧化碳的活性中心的理解。