Suppr超能文献

过渡金属/氮掺杂碳催化剂上CO电化学还原为CO:活性位点与反应机理

Electrochemical Reduction of CO to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism.

作者信息

Liang Shuyu, Huang Liang, Gao Yanshan, Wang Qiang, Liu Bin

机构信息

College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, P. R. China.

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.

出版信息

Adv Sci (Weinh). 2021 Dec;8(24):e2102886. doi: 10.1002/advs.202102886. Epub 2021 Oct 31.

Abstract

Electrochemical CO reduction to value-added chemicals/fuels provides a promising way to mitigate CO emission and alleviate energy shortage. CO -to-CO conversion involves only two-electron/proton transfer and thus is kinetically fast. Among the various developed CO -to-CO reduction electrocatalysts, transition metal/N-doped carbon (M-N-C) catalysts are attractive due to their low cost and high activity. In this work, recent progress on the development of M-N-C catalysts for electrochemical CO -to-CO conversion is reviewed in detail. The regulation of the active sites in M-N-C catalysts and their related adjustable electrocatalytic CO reduction performance is discussed. A visual performance comparison of M-N-C catalysts for CO reduction reaction (CO RR) reported over the recent years is given, which suggests that Ni and Fe-N-C catalysts are the most promising candidates for large-scale reduction of CO to produce CO. Finally, outlooks and challenges are proposed for future research of CO -to-CO conversion.

摘要

电化学将CO还原为增值化学品/燃料为减少CO排放和缓解能源短缺提供了一条很有前景的途径。CO到CO的转化仅涉及两电子/质子转移,因此动力学上很快。在各种已开发的CO到CO还原电催化剂中,过渡金属/N掺杂碳(M-N-C)催化剂因其低成本和高活性而具有吸引力。在这项工作中,详细综述了用于电化学CO到CO转化的M-N-C催化剂开发的最新进展。讨论了M-N-C催化剂中活性位点的调控及其相关的可调节电催化CO还原性能。给出了近年来报道的用于CO还原反应(CO RR)的M-N-C催化剂的直观性能比较,这表明Ni和Fe-N-C催化剂是大规模将CO还原以生产CO最有前景的候选者。最后,对CO到CO转化的未来研究提出了展望和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1380/8693035/97a0ba9e8635/ADVS-8-2102886-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验