Suppr超能文献

用于高效电化学CO还原的石墨烯负载单原子FeN催化位点

A Graphene-Supported Single-Atom FeN Catalytic Site for Efficient Electrochemical CO Reduction.

作者信息

Zhang Huinian, Li Jing, Xi Shibo, Du Yonghua, Hai Xiao, Wang Junying, Xu Haomin, Wu Gang, Zhang Jia, Lu Jiong, Wang Junzhong

机构信息

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China.

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.

出版信息

Angew Chem Int Ed Engl. 2019 Oct 14;58(42):14871-14876. doi: 10.1002/anie.201906079. Epub 2019 Sep 9.

Abstract

Electrochemical conversion of CO into valued products is one of the most important issues but remains a great challenge in chemistry. Herein, we report a novel synthetic approach involving prolonged thermal pyrolysis of hemin and melamine molecules on graphene for the fabrication of a robust and efficient single-iron-atom electrocatalyst for electrochemical CO reduction. The single-atom catalyst exhibits high Faradaic efficiency (ca. 97.0 %) for CO production at a low overpotential of 0.35 V, outperforming all Fe-N-C-based catalysts. The remarkable performance for CO -to-CO conversion can be attributed to the presence of highly efficient singly dispersed FeN active sites supported on N-doped graphene with an additional axial ligand coordinated to FeN . DFT calculations revealed that the axial pyrrolic nitrogen ligand of the FeN site further depletes the electron density of Fe 3d orbitals and thus reduces the Fe-CO π back-donation, thus enabling the rapid desorption of CO and high selectivity for CO production.

摘要

将CO电化学转化为有价值的产物是化学领域最重要的问题之一,但仍然是一个巨大的挑战。在此,我们报道了一种新颖的合成方法,该方法涉及在石墨烯上对血红素和三聚氰胺分子进行长时间热解,以制备用于电化学CO还原的坚固且高效的单铁原子电催化剂。该单原子催化剂在0.35 V的低过电位下对CO生成表现出高法拉第效率(约97.0%),优于所有基于Fe-N-C的催化剂。CO到CO转化的卓越性能可归因于在N掺杂石墨烯上存在高效的单分散FeN活性位点,且有一个额外的轴向配体与FeN配位。密度泛函理论计算表明,FeN位点的轴向吡咯氮配体进一步耗尽了Fe 3d轨道的电子密度,从而减少了Fe-CO π反馈键,进而实现了CO的快速解吸和对CO生成的高选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验