Suppr超能文献

利用最先进的“组学”技术和生物信息学来识别冠状动脉疾病的新生物学机制和生物标志物。

Utilizing state-of-the-art "omics" technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease.

作者信息

Vernon Stephen T, Hansen Thomas, Kott Katharine A, Yang Jean Y, O'Sullivan John F, Figtree Gemma A

机构信息

Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.

Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.

出版信息

Microcirculation. 2019 Feb;26(2):e12488. doi: 10.1111/micc.12488. Epub 2018 Jul 23.

Abstract

Identification of the four standard modifiable cardiovascular risk factors (SMuRFs)-diabetes mellitus, hyperlipidaemia, hypertension, and cigarette smoking-has allowed the development of risk scores. These have been used in conjunction with primary and secondary prevention strategies targeting SMuRFs to reduce the burden of CAD. Recent studies show that up to 25% of ACS patients do not have any SMuRFs. Thus, SMuRFs do not explain the entire burden of CAD. There appears to be variation at the individual level rendering some individuals relatively susceptible or resilient to developing atherosclerosis. Important disease pathways remain to be discovered, and there is renewed enthusiasm to discover novel biomarkers, biological mechanisms, and therapeutic targets for atherosclerosis. Two broad approaches are being taken: traditional approaches investigating known candidate pathways and unbiased omics approaches. We review recent progress in the field and discuss opportunities made possible by technological and data science advances. Developments in network analytics and machine learning algorithms used in conjunction with large-scale multi-omic platforms have the potential to uncover biological networks that may not have been identifiable using traditional approaches. These approaches are useful for both biomedical research and precision medicine strategies.

摘要

确定四种标准的可改变心血管危险因素(SMuRFs)——糖尿病、高脂血症、高血压和吸烟——使得风险评分得以制定。这些评分已与针对SMuRFs的一级和二级预防策略结合使用,以减轻冠心病的负担。最近的研究表明,高达25%的急性冠状动脉综合征(ACS)患者没有任何SMuRFs。因此,SMuRFs并不能解释冠心病的全部负担。个体层面似乎存在差异,使得一些个体相对易患或抵抗动脉粥样硬化的发生。重要的疾病途径仍有待发现,人们重新燃起了发现动脉粥样硬化新生物标志物、生物学机制和治疗靶点的热情。目前正在采取两种广泛的方法:研究已知候选途径的传统方法和无偏倚的组学方法。我们回顾了该领域的最新进展,并讨论了技术和数据科学进步带来的机遇。与大规模多组学平台结合使用的网络分析和机器学习算法的发展,有可能揭示使用传统方法可能无法识别的生物网络。这些方法对生物医学研究和精准医学策略都很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验