School of Physics and Astronomy, SUPA, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom.
ISIS, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom.
Phys Rev Lett. 2018 Jun 15;120(24):247001. doi: 10.1103/PhysRevLett.120.247001.
We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb, and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50-nm-thick Nb film, we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green's function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics.
我们使用μ子自旋旋转技术观察了 Nb、Cu/Nb 和 Cu/Nb/Co 薄膜中的磁通空间分布。在一个孤立的 50nm 厚的 Nb 薄膜中,我们发现了微弱的磁通排斥(迈斯纳效应),当添加相邻的 40nm 厚的 Cu 层时,这种效应显著增强。添加的 Cu 层表现出迈斯纳效应(由于感应超导对),并且至少与 Nb 一样有效地排斥磁通。这些结果得到了使用准经典格林函数形式理论计算的证实。当在 Nb 的下侧添加薄(2.4nm)铁磁 Co 层时,观察到磁通排斥的进一步显著增强。这种超导性和铁磁性之间的意外协同作用,通过未知的机制,形成了开发超导自旋电子学的关键因素。