Kou Yi, Koag Myong-Chul, Lee Seongmin
Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States.
Biochemistry. 2018 Aug 28;57(34):5105-5116. doi: 10.1021/acs.biochem.8b00331. Epub 2018 Aug 13.
A wide variety of endogenous and exogenous alkylating agents attack DNA to preferentially generate N7-alkylguanine (N7-alkylG) adducts. Studies of the effect of N7-alkylG lesions on biological processes have been difficult in part because of complications arising from the chemical lability of the positively charged N7-alkylG, which can readily produce secondary lesions. To assess the effect of bulky N7-alkylG on DNA replication, we prepared chemically stable N7-benzylguanine (N7bnG)-containing DNA and evaluated nucleotide incorporation opposite the lesion by human DNA polymerase β (polβ), a model enzyme for high-fidelity DNA polymerases. Kinetic studies showed that the N7-benzyl-G lesion greatly inhibited dCTP incorporation by polβ. The crystal structure of polβ incorporating dCTP opposite N7bnG showed a Watson-Crick N7bnG:dCTP structure. The polβ-N7bnG:dCTP structure showed an open protein conformation, a relatively disordered dCTP, and a lack of catalytic metal, which explained the inefficient nucleotide incorporation opposite N7bnG. This indicates that polβ is sensitive to major groove adducts in the templating base side and deters nucleotide incorporation opposite bulky N7-alkylG adducts by adopting a catalytically incompetent conformation. Substituting Mg for Mn induced an open-to-closed conformational change due to the presence of catalytic metal and stably bound dCTP and increased the catalytic efficiency by ∼10-fold, highlighting the effect of binding of the incoming nucleotide and catalytic metal on protein conformation and nucleotidyl transfer reaction. Overall, these results suggest that, although bulky alkyl groups at guanine-N7 may not alter base pairing properties of guanine, the major groove-positioned lesions in the template could impede nucleotidyl transfer by some DNA polymerases.
各种各样的内源性和外源性烷化剂会攻击DNA,优先生成N7-烷基鸟嘌呤(N7-alkylG)加合物。研究N7-烷基G损伤对生物过程的影响一直很困难,部分原因是带正电荷的N7-烷基G具有化学不稳定性,容易产生继发性损伤,从而引发了一些复杂问题。为了评估大体积N7-烷基G对DNA复制的影响,我们制备了含有化学稳定的N7-苄基鸟嘌呤(N7bnG)的DNA,并通过人DNA聚合酶β(polβ)(一种高保真DNA聚合酶的模型酶)评估了损伤位点对面的核苷酸掺入情况。动力学研究表明,N7-苄基-G损伤极大地抑制了polβ掺入dCTP。polβ在N7bnG对面掺入dCTP的晶体结构显示出沃森-克里克N7bnG:dCTP结构。polβ-N7bnG:dCTP结构显示出开放的蛋白质构象、相对无序的dCTP以及缺乏催化金属,这解释了在N7bnG对面核苷酸掺入效率低下的原因。这表明polβ对模板碱基侧的大沟加合物敏感,并通过采用无催化活性的构象来阻止在大体积N7-烷基G加合物对面掺入核苷酸。用Mg替代Mn会由于催化金属的存在和稳定结合的dCTP而诱导从开放到封闭的构象变化,并使催化效率提高约10倍,突出了进入的核苷酸和催化金属的结合对蛋白质构象和核苷酸转移反应的影响。总体而言,这些结果表明,尽管鸟嘌呤N7位的大体积烷基可能不会改变鸟嘌呤的碱基配对特性,但模板中位于大沟的损伤可能会阻碍一些DNA聚合酶的核苷酸转移。