Protonotarios Emmanouil D, Griffin Lewis D, Johnston Alan, Landy Michael S
Department of Psychology, New York University, New York, USA; CoMPLEX, University College London, London, UK.
Department of Computer Science, University College London, London, UK; CoMPLEX, University College London, London, UK.
Vision Res. 2018 Aug;149:102-114. doi: 10.1016/j.visres.2018.06.008. Epub 2018 Jul 2.
Subjective assessments of spatial regularity are common in everyday life and also in science, for example in developmental biology. It has recently been shown that regularity is an adaptable visual dimension. It was proposed that regularity is coded via the peakedness of the distribution of neural responses across receptive field size. Here, we test this proposal for jittered square lattices of dots. We examine whether discriminability correlates with a simple peakedness measure across different presentation conditions (dot number, size, and average spacing). Using a filter-rectify-filter model, we determined responses across scale. Consistently, two peaks are present: a lower frequency peak corresponding to the dot spacing of the regular pattern and a higher frequency peak corresponding to the pattern element (dot). We define the "peakedness" of a particular presentation condition as the relative heights of these two peaks for a perfectly regular pattern constructed using the corresponding dot size, number and spacing. We conducted two psychophysical experiments in which observers judged relative regularity in a 2-alternative forced-choice task. In the first experiment we used a single reference pattern of intermediate regularity and, in the second, Thurstonian scaling of patterns covering the entire range of regularity. In both experiments discriminability was highly correlated with peakedness for a wide range of presentation conditions. This supports the hypothesis that regularity is coded via peakedness of the distribution of responses across scale.
对空间规则性的主观评估在日常生活中很常见,在科学领域也是如此,例如在发育生物学中。最近有研究表明,规则性是一个可适应的视觉维度。有人提出,规则性是通过神经反应在感受野大小上的分布峰值来编码的。在这里,我们针对抖动的点方晶格对这一假设进行测试。我们研究了在不同呈现条件(点数、大小和平均间距)下,可辨别性是否与一种简单的峰值测量相关。使用滤波 - 整流 - 滤波模型,我们确定了不同尺度下的反应。一致地,存在两个峰值:一个较低频率的峰值对应于规则图案的点间距,一个较高频率的峰值对应于图案元素(点)。我们将特定呈现条件下的“峰值度”定义为使用相应的点大小、数量和间距构建的完美规则图案的这两个峰值的相对高度。我们进行了两个心理物理学实验,在其中观察者在二选一强制选择任务中判断相对规则性。在第一个实验中,我们使用了一个中等规则性的单一参考图案,在第二个实验中,我们对涵盖整个规则性范围的图案进行了瑟斯顿标度。在这两个实验中,在广泛的呈现条件下,可辨别性与峰值度高度相关。这支持了规则性是通过跨尺度反应分布的峰值来编码的假设。