Suppr超能文献

最可转移的在雅各布天梯的顶端生存:定义和测试 ωB97M(2)双杂交密度泛函。

Survival of the most transferable at the top of Jacob's ladder: Defining and testing the ωB97M(2) double hybrid density functional.

机构信息

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2018 Jun 28;148(24):241736. doi: 10.1063/1.5025226.

Abstract

A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.

摘要

提出了一种元广义梯度逼近、带 VV10 非局部相关的范围分离双杂交 (DH) 密度泛函。最终的 14 参数函数形式是通过结合最佳子集选择、前向逐步选择和随机样本共识 (RANSAC) 异常值检测,从数万亿个候选拟合中筛选出来的。该工作采用了 MGCDB84 数据库中的 4986 个数据点,其中包含 870 个数据点的训练集、2964 个数据点的验证集和 1152 个数据点的测试集。采用 xDH 方法,ωB97M-V 密度泛函的轨道用于计算二阶微扰理论校正。得到的功能,ωB97M(2),与各种领先的双杂交密度泛函进行了基准测试,包括 B2PLYP-D3(BJ)、B2GPPLYP-D3(BJ)、ωB97X-2(TQZ)、XYG3、PTPSS-D3(0)、XYGJ-OS、DSD-PBEP86-D3(BJ)和 DSD-PBEPBE-D3(BJ)。令人鼓舞的是,ωB97M(2)在近 5000 个数据点上的整体性能明显优于所有测试的密度泛函。作为一个第五级密度泛函,ωB97M(2)完成了我们的组合优化泛函家族,补充了第三级的 B97M-V,以及第四级的 ωB97X-V 和 ωB97M-V。结果表明,ωB97M(2)有可能成为一种强大的预测工具,用于准确和高效地计算主族化学的电子结构。

相似文献

4
Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals.
J Phys Chem Lett. 2017 Jan 5;8(1):35-40. doi: 10.1021/acs.jpclett.6b02527. Epub 2016 Dec 12.
7
Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals.
J Chem Theory Comput. 2020 Aug 11;16(8):4963-4982. doi: 10.1021/acs.jctc.0c00292. Epub 2020 Jul 16.
8
Assessment of Performance of Density Functionals for Predicting Potential Energy Curves in Hydrogen Storage Applications.
J Phys Chem A. 2021 May 20;125(19):4245-4257. doi: 10.1021/acs.jpca.1c01041. Epub 2021 May 5.

引用本文的文献

1
Modified Opposite-Spin-Scaled Double-Hybrid Functionals.
J Phys Chem A. 2025 Aug 7;129(31):7218-7228. doi: 10.1021/acs.jpca.5c01035. Epub 2025 Jul 24.
2
Further Mechanistic Investigations into the Blue Light-Driven O-H Functionalization of Alcohols by Aryldiazoacetates.
J Org Chem. 2025 Jun 20;90(24):8202-8213. doi: 10.1021/acs.joc.5c00614. Epub 2025 Jun 9.
3
Tests of the DFT Ladder for the Fulminic Acid Challenge.
J Am Chem Soc. 2025 Apr 30;147(17):14088-14104. doi: 10.1021/jacs.4c13823. Epub 2025 Apr 16.
4
Nonempirical Adiabatic Connection Correlation Functional from Hartree-Fock Orbitals.
J Phys Chem Lett. 2025 Apr 3;16(13):3378-3388. doi: 10.1021/acs.jpclett.4c03593. Epub 2025 Mar 26.
5
The Fluoride Ion Affinity Revisited: Do We Need the Anchor-Point Approach?
Chemistry. 2025 May 8;31(26):e202404662. doi: 10.1002/chem.202404662. Epub 2025 Apr 22.
6
Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals.
J Chem Theory Comput. 2025 Jan 28;21(2):762-775. doi: 10.1021/acs.jctc.4c01503. Epub 2025 Jan 13.
7
Hydrogen ejection from hydrocarbons: Characterization and relevance in soot formation and interstellar chemistry.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2202744121. doi: 10.1073/pnas.2202744121. Epub 2024 Dec 9.
8
Toward Efficient and Unified Treatment of Static and Dynamic Correlations in Generalized Kohn-Sham Density Functional Theory.
JACS Au. 2024 Aug 12;4(8):3205-3216. doi: 10.1021/jacsau.4c00488. eCollection 2024 Aug 26.
9
Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies.
ACS Omega. 2024 Jul 8;9(29):31254-31273. doi: 10.1021/acsomega.4c02628. eCollection 2024 Jul 23.

本文引用的文献

3
Dispersion-Corrected Mean-Field Electronic Structure Methods.
Chem Rev. 2016 May 11;116(9):5105-54. doi: 10.1021/acs.chemrev.5b00533. Epub 2016 Apr 14.
4
What Are the Ground State Structures of C20 and C24? An Explicitly Correlated Ab Initio Approach.
J Phys Chem A. 2016 Jan 14;120(1):153-60. doi: 10.1021/acs.jpca.5b10266. Epub 2015 Dec 24.
8
Conformers of Gaseous Cysteine.
J Chem Theory Comput. 2009 Jun 9;5(6):1511-23. doi: 10.1021/ct900005c. Epub 2009 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验