Suppr超能文献

[Nitrogen Removal Performance and Microbial Community Analysis of Activated Sludge Immobilization].

作者信息

Xu Xiao-Yi, You Xiao-Lu, Lü Chen-Pei, Wang Bin, Hu Bi-Bo

机构信息

College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China.

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

出版信息

Huan Jing Ke Xue. 2017 May 8;38(5):2052-2058. doi: 10.13227/j.hjkx.201611016.

Abstract

Immobilization of activated sludge was used to further remove nitrogen from secondary effluent. Intermittent sequencing batch reactor experiments were conducted to measure nitrogen removal in synthetic wastewater with initial total nitrogen concentrations (TN) of 10-45 mg·L and C/N ratio of 1.78-10, and microbial community characteristic of embedding beads was investigated. When the packing ratio of embedding beads was 10%, and the temperature of wastewater, dissolved oxygen (DO), initial concentration of chemical oxygen demand (COD) were maintained at 10-15℃, 2-4 mg·L, and 80-100 mg·L, respectively, the results showed that the maximum total nitrogen removal loads ranged from 7.78 to 23.18 mg·(L·h)during the stable phase. SEM observations showed that the embedding beads were highly porous and microorganisms adhered to the interior and external surface of embedding beads, demonstrating that embedding beads acted as an ideal support material. Based on high-throughput sequencing analysis, the structure of microbial communities in the beads'interior and exterior changed significantly compared with embedding activated sludge. The advantage of denitrifying bacteria in embedding beads was obvious and the microbial diversity was good. Some microorganisms which can conduct both heterotrophic nitrification and aerobic denitrification, were identified. These processes may facilitate pathways for untraditional biological denitrification in the beads'interior.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验