Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China.
Physikalisches Institut , Westfälische Wilhelms-Universität & Center for Nanotechnology (CeNTech) , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany.
Nano Lett. 2018 Aug 8;18(8):4704-4709. doi: 10.1021/acs.nanolett.8b01019. Epub 2018 Jul 9.
Molecular rotors on solid surfaces are fundamental components of molecular machines. No matter whether the rotation is activated by heat, electric field or light, it is determined by the intrinsic rotational potential landscape. Therefore, tuning the potential landscape is of great importance for future applications of controlled molecular rotors. Here, using scanning tunneling microscopy (STM), we demonstrate that both tip-molecule distance and sample bias can modify the rotational potential of molecular rotors. We achieve the potential energy difference variations of ∼0.3 meV/pm and ∼18 meV/V between two configurations of a molecular rotor, a tetra- tert-butyl nickel phthalocyanine molecule on Au(111) substrate. Further analysis indicates that the mechanism of modifying the rotational potential is a combination of the van der Waals interaction and the interaction between the molecular dipole and an electric field. This work provides insight into the methods used to modify the effective rotational potential energy of molecular rotors.
在固体表面上的分子转子是分子机器的基本组成部分。无论旋转是由热、电场还是光激活的,它都取决于内在的旋转势能景观。因此,调整势能景观对于未来控制分子转子的应用非常重要。在这里,我们使用扫描隧道显微镜(STM)证明了尖端-分子距离和样品偏压都可以改变分子转子的旋转势能。我们实现了在 Au(111)衬底上的一个四-叔丁基镍酞菁分子的两种构型之间的约 0.3 meV/pm 和 ∼18 meV/V 的势能差变化。进一步的分析表明,修饰旋转势能的机制是范德华相互作用和分子偶极子与电场之间相互作用的结合。这项工作为修饰分子转子的有效旋转势能的方法提供了深入的了解。