Suppr超能文献

流感病毒融合过程中靶膜稳定性的脂质依赖性。

Lipid-dependence of target membrane stability during influenza viral fusion.

机构信息

Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.

Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA

出版信息

J Cell Sci. 2018 Aug 10;132(4):jcs218321. doi: 10.1242/jcs.218321.

Abstract

Although influenza kills about a half million people each year, even after excluding pandemics, there is only one set of antiviral drugs: neuraminidase inhibitors. By using a new approach utilizing giant unilamellar vesicles and infectious X-31 influenza virus, and testing for the newly identified pore intermediate of membrane fusion, we observed ∼30-87% poration, depending upon lipid composition. Testing the hypothesis that spontaneous curvature (SC) of the lipid monolayer controls membrane poration, our Poisson model and Boltzmann energetic considerations suggest a transition from a leaky to a non-leaky fusion pathway depending on the SC of the target membrane. When the target membrane SC is below approximately -0.20 nm fusion between influenza virus and target membrane is predominantly non-leaky while above that fusion is predominantly leaky, suggesting that influenza hemagglutinin (HA)-catalyzed topological conversion of target membranes during fusion is associated with a loss of membrane integrity.

摘要

虽然流感每年导致约 50 万人死亡,即使排除大流行,也只有一组抗病毒药物:神经氨酸酶抑制剂。通过使用利用巨大的单层囊泡和传染性 X-31 流感病毒的新方法,并针对新鉴定的膜融合中间孔进行测试,我们观察到约 30-87%的穿孔,具体取决于脂质组成。通过测试脂质单层的自发曲率 (SC) 控制膜穿孔的假设,我们的泊松模型和玻尔兹曼能量考虑表明,取决于靶膜的 SC,从漏融合途径到非漏融合途径的转变。当靶膜 SC 低于约-0.20nm 时,流感病毒与靶膜之间的融合主要是非漏融合,而高于该值时,融合主要是漏融合,这表明流感血凝素 (HA) 催化的靶膜拓扑转换在融合过程中与膜完整性的丧失有关。

相似文献

1
Lipid-dependence of target membrane stability during influenza viral fusion.
J Cell Sci. 2018 Aug 10;132(4):jcs218321. doi: 10.1242/jcs.218321.
3
Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores.
J Gen Physiol. 1998 Oct;112(4):409-22. doi: 10.1085/jgp.112.4.409.
5
Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.
J Biol Chem. 2010 Nov 26;285(48):37467-75. doi: 10.1074/jbc.M110.153700. Epub 2010 Sep 8.
7
Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity.
Int J Mol Sci. 2021 May 18;22(10):5301. doi: 10.3390/ijms22105301.
8
Line-tension controlled mechanism for influenza fusion.
PLoS One. 2012;7(6):e38302. doi: 10.1371/journal.pone.0038302. Epub 2012 Jun 28.
9
Fusion of influenza virus with sialic acid-bearing target membranes.
Biochemistry. 1994 Mar 1;33(8):1977-87. doi: 10.1021/bi00174a002.

引用本文的文献

1
Influenza viral infection at the plasma membrane is restricted by lipid composition.
J Virol. 2025 Jul 24:e0110525. doi: 10.1128/jvi.01105-25.
2
3
SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation.
Int J Mol Sci. 2025 Jan 15;26(2):686. doi: 10.3390/ijms26020686.
4
Molecular Dynamics Investigation of the Influenza Hemagglutinin Conformational Changes in Acidic pH.
J Phys Chem B. 2024 Nov 14;128(45):11151-11163. doi: 10.1021/acs.jpcb.4c04607. Epub 2024 Nov 4.
6
Two modes of fusogenic action for influenza virus fusion peptide.
PLoS Comput Biol. 2023 May 26;19(5):e1011174. doi: 10.1371/journal.pcbi.1011174. eCollection 2023 May.
7
Serinc5 Restricts HIV Membrane Fusion by Altering Lipid Order and Heterogeneity in the Viral Membrane.
ACS Infect Dis. 2023 Apr 14;9(4):773-784. doi: 10.1021/acsinfecdis.2c00478. Epub 2023 Mar 22.
8
Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion.
Biophys J. 2023 Mar 21;122(6):1018-1032. doi: 10.1016/j.bpj.2022.12.029. Epub 2022 Dec 27.
10
Influenza Virus Membrane Fusion Is Promoted by the Endosome-Resident Phospholipid Bis(monoacylglycero)phosphate.
J Phys Chem B. 2022 Dec 15;126(49):10445-10451. doi: 10.1021/acs.jpcb.2c06642. Epub 2022 Dec 5.

本文引用的文献

1
Bursting the Bubble - Nuclear Envelope Rupture as a Path to Genomic Instability?
Trends Cell Biol. 2017 Aug;27(8):546-555. doi: 10.1016/j.tcb.2017.02.008. Epub 2017 Mar 9.
2
Membrane Fusion and Infection of the Influenza Hemagglutinin.
Adv Exp Med Biol. 2017;966:37-54. doi: 10.1007/5584_2016_174.
4
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion.
J Virol. 2016 Jul 11;90(15):6948-6962. doi: 10.1128/JVI.00240-16. Print 2016 Aug 1.
5
Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.
Biophys J. 2016 Mar 8;110(5):1110-24. doi: 10.1016/j.bpj.2016.01.013.
6
Fusion of Enveloped Viruses in Endosomes.
Traffic. 2016 Jun;17(6):593-614. doi: 10.1111/tra.12389. Epub 2016 Apr 7.
7
Exocytotic fusion pores are composed of both lipids and proteins.
Nat Struct Mol Biol. 2016 Jan;23(1):67-73. doi: 10.1038/nsmb.3141. Epub 2015 Dec 14.
8
Expansion of the fusion stalk and its implication for biological membrane fusion.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11043-8. doi: 10.1073/pnas.1323221111. Epub 2014 Jul 14.
9
Monolayer spontaneous curvature of raft-forming membrane lipids.
Soft Matter. 2013 Dec 7;9(45):10877-10884. doi: 10.1039/C3SM51829A.
10
Gel-assisted formation of giant unilamellar vesicles.
Biophys J. 2013 Jul 2;105(1):154-64. doi: 10.1016/j.bpj.2013.05.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验