Suppr超能文献

识别推特帖子中有关副作用的消费者健康术语。

Identifying Consumer Health Terms of Side Effects in Twitter Posts.

作者信息

Jiang Keyuan, Chen Tingyu, Calix Ricardo A, Bernard Gordon R

机构信息

Computer Information Technology & Graphics, Purdue University Northwest, U.S.A.

Department of Medicine, Vanderbilt University, U.S.A.

出版信息

Stud Health Technol Inform. 2018;251:273-276.

Abstract

Prevalence of social media has driven a growing number of health related applications with the information shared by online users. It is well known that a gap exists between healthcare professionals and laypeople in expressing the same health concepts. Filling this gap is particularly important for health related applications using social media data. A data-driven, attributional similarity-based method was developed to identify Twitter terms related to side effect concepts. For the 10 most common side effect (symptom) concepts, our method was able to identify a total of 333 Twitter terms, among which only 90 are mapped to those in the consumer health vocabulary (CHV). The identified Twitter terms are specific to Twitter data, indicating a need to expand the existing CHV, and many of them seem to have less ambiguity in word senses than those in CHV.

摘要

社交媒体的普及推动了越来越多与健康相关的应用程序,这些应用程序使用在线用户共享的信息。众所周知,医疗保健专业人员和外行人在表达相同的健康概念时存在差距。对于使用社交媒体数据的健康相关应用程序而言,填补这一差距尤为重要。我们开发了一种基于数据驱动、归因相似性的方法来识别与副作用概念相关的推特术语。对于10个最常见的副作用(症状)概念,我们的方法总共能够识别出333个推特术语,其中只有90个与消费者健康词汇表(CHV)中的术语相匹配。所识别出的推特术语特定于推特数据,这表明需要扩展现有的CHV,而且其中许多术语在词义上似乎比CHV中的术语歧义更少。

相似文献

7
Cadec: A corpus of adverse drug event annotations.Cadec:一个药物不良事件注释语料库。
J Biomed Inform. 2015 Jun;55:73-81. doi: 10.1016/j.jbi.2015.03.010. Epub 2015 Mar 27.
8
Classifying adverse drug reactions from imbalanced twitter data.从不平衡的推特数据中分类药物不良反应。
Int J Med Inform. 2019 Sep;129:122-132. doi: 10.1016/j.ijmedinf.2019.05.017. Epub 2019 May 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验