Suppr超能文献

社交媒体中不良事件数据的患病率、发生频率及比较价值的系统评价。

Systematic review on the prevalence, frequency and comparative value of adverse events data in social media.

作者信息

Golder Su, Norman Gill, Loke Yoon K

机构信息

Department of Health Sciences, University of York, York, YO10 5DD, UK.

School of Nursing, Midwifery & Social Work, University of Manchester, Room 5.328, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Br J Clin Pharmacol. 2015 Oct;80(4):878-88. doi: 10.1111/bcp.12746. Epub 2015 Sep 16.

Abstract

AIM

The aim of this review was to summarize the prevalence, frequency and comparative value of information on the adverse events of healthcare interventions from user comments and videos in social media.

METHODS

A systematic review of assessments of the prevalence or type of information on adverse events in social media was undertaken. Sixteen databases and two internet search engines were searched in addition to handsearching, reference checking and contacting experts. The results were sifted independently by two researchers. Data extraction and quality assessment were carried out by one researcher and checked by a second. The quality assessment tool was devised in-house and a narrative synthesis of the results followed.

RESULTS

From 3064 records, 51 studies met the inclusion criteria. The studies assessed over 174 social media sites with discussion forums (71%) being the most popular. The overall prevalence of adverse events reports in social media varied from 0.2% to 8% of posts. Twenty-nine studies compared the results from searching social media with using other data sources to identify adverse events. There was general agreement that a higher frequency of adverse events was found in social media and that this was particularly true for 'symptom' related and 'mild' adverse events. Those adverse events that were under-represented in social media were laboratory-based and serious adverse events.

CONCLUSIONS

Reports of adverse events are identifiable within social media. However, there is considerable heterogeneity in the frequency and type of events reported, and the reliability or validity of the data has not been thoroughly evaluated.

摘要

目的

本综述的目的是总结社交媒体中用户评论和视频里医疗保健干预措施不良事件信息的发生率、出现频率及比较价值。

方法

对社交媒体中不良事件信息的发生率或类型评估进行系统综述。除了手工检索、参考文献核对及联系专家外,还检索了16个数据库和两个互联网搜索引擎。结果由两名研究人员独立筛选。数据提取和质量评估由一名研究人员进行,另一名研究人员进行核对。质量评估工具是内部设计的,随后对结果进行了叙述性综合分析。

结果

从3064条记录中,51项研究符合纳入标准。这些研究评估了174多个社交媒体网站,其中讨论论坛最受欢迎(占71%)。社交媒体中不良事件报告的总体发生率在帖子的0.2%至8%之间。29项研究比较了通过社交媒体搜索与使用其他数据源识别不良事件的结果。人们普遍认为,社交媒体中发现的不良事件频率更高,对于与“症状”相关的和“轻度”不良事件尤其如此。在社交媒体中报道不足的不良事件是基于实验室的不良事件和严重不良事件。

结论

社交媒体中可识别出不良事件报告。然而,所报告事件的频率和类型存在相当大的异质性,且数据的可靠性或有效性尚未得到充分评估。

相似文献

1
Systematic review on the prevalence, frequency and comparative value of adverse events data in social media.
Br J Clin Pharmacol. 2015 Oct;80(4):878-88. doi: 10.1111/bcp.12746. Epub 2015 Sep 16.
2
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
4
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
5
The measurement and monitoring of surgical adverse events.
Health Technol Assess. 2001;5(22):1-194. doi: 10.3310/hta5220.
6
Pharmacological interventions for those who have sexually offended or are at risk of offending.
Cochrane Database Syst Rev. 2015 Feb 18;2015(2):CD007989. doi: 10.1002/14651858.CD007989.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
10
Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD).
Cochrane Database Syst Rev. 2015 Nov 25;2015(11):CD009885. doi: 10.1002/14651858.CD009885.pub2.

引用本文的文献

2
Understanding social media discourse on antidepressants: unsupervised and sentiment analysis using X.
Eur Psychiatry. 2025 Mar 5;68(1):e51. doi: 10.1192/j.eurpsy.2025.10.
3
Social media as a source of drug safety information in the paediatric population.
Br J Clin Pharmacol. 2025 Jun;91(6):1760-1770. doi: 10.1111/bcp.16392. Epub 2025 Feb 3.
4
Analysis of User-Generated Posts on Social Media of Adjuvant Analgesics: A Machine Learning Study.
Int J Med Sci. 2025 Jan 1;22(1):170-178. doi: 10.7150/ijms.96981. eCollection 2025.
7
The Value of Social Media Analysis for Adverse Events Detection and Pharmacovigilance: Scoping Review.
JMIR Public Health Surveill. 2024 Sep 6;10:e59167. doi: 10.2196/59167.
8
Evaluating Messaging on Prenatal Health Behaviors Using Social Media Data: Systematic Review.
J Med Internet Res. 2023 Dec 20;25:e44912. doi: 10.2196/44912.
9
Patient-Reported Reasons for Antihypertensive Medication Change: A Quantitative Study Using Social Media.
Drug Saf. 2024 Jan;47(1):81-91. doi: 10.1007/s40264-023-01366-5. Epub 2023 Nov 23.

本文引用的文献

1
YouTube and the single-rod contraceptive implant: a content analysis.
J Fam Plann Reprod Health Care. 2017 Jul;43(3):195-200. doi: 10.1136/jfprhc-2016-101593. Epub 2017 Jan 20.
2
The Potential of Twitter as a Data Source for Patient Safety.
J Patient Saf. 2019 Dec;15(4):e32-e35. doi: 10.1097/PTS.0000000000000253.
3
Cadec: A corpus of adverse drug event annotations.
J Biomed Inform. 2015 Jun;55:73-81. doi: 10.1016/j.jbi.2015.03.010. Epub 2015 Mar 27.
4
Utilizing social media data for pharmacovigilance: A review.
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.
5
Mining adverse drug reactions from online healthcare forums using hidden Markov model.
BMC Med Inform Decis Mak. 2014 Oct 23;14:91. doi: 10.1186/1472-6947-14-91.
8
One hundred and twenty cases of enduring sexual dysfunction following treatment.
Int J Risk Saf Med. 2014;26(2):109-16. doi: 10.3233/JRS-140617.
9
Digital drug safety surveillance: monitoring pharmaceutical products in twitter.
Drug Saf. 2014 May;37(5):343-50. doi: 10.1007/s40264-014-0155-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验