Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark.
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , UiT The Arctic University of Norway , N-9037 Tromsø , Norway.
J Chem Theory Comput. 2018 Aug 14;14(8):4309-4319. doi: 10.1021/acs.jctc.8b00202. Epub 2018 Jul 17.
Quantum chemistry embedding methods have become a popular approach to calculate molecular properties of larger systems. In order to account for finite temperature effects, including both configurational and conformational averaging, embedding methods are often combined with molecular dynamics (MD) simulations either in a direct or sequential manner. One of the decisive factors for a successful application of embedding methods is that that the underlying structures provided by the MD simulation are accurate, if not this will result in low-quality prediction of the molecular properties in question. Here we investigate different approaches for generating a set of molecular structures to be used in subsequent embedding calculations ranging from classical MD using a standard molecular mechanics (MM) force field to combined quantum mechanics/molecular mechanics (QM/MM) MD. Overall, we find an intermediate approach relying on classical MD followed by a constrained QM/MM geometry optimization to be a fairly accurate and very cost-effective approach, although this procedure naturally leads to underestimation of, for example, spectral bandwidths.
量子化学嵌入方法已成为计算较大系统分子性质的一种流行方法。为了考虑有限温度效应,包括构象和构象平均,嵌入方法通常与分子动力学(MD)模拟相结合,无论是直接还是顺序方式。嵌入方法成功应用的一个决定性因素是,MD 模拟提供的基础结构是准确的,如果不是这样,将会导致所讨论的分子性质的低质量预测。在这里,我们研究了不同的方法来生成一组分子结构,以便在随后的嵌入计算中使用,范围从使用标准分子力学(MM)力场的经典 MD 到组合量子力学/分子力学(QM/MM)MD。总的来说,我们发现一种中间方法,即依赖于经典 MD,然后进行约束 QM/MM 几何优化,是一种相当准确且非常经济有效的方法,尽管该过程自然会导致例如光谱带宽的低估。