Suppr超能文献

时变多变量模式分析 (tMVPA):一种探索 BOLD 信号时变动力学的单次试验方法。

Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal.

机构信息

Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States.

Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States; Department of Psychology, University of Minnesota, Minneapolis, MN, United States.

出版信息

J Neurosci Methods. 2018 Oct 1;308:74-87. doi: 10.1016/j.jneumeth.2018.06.029. Epub 2018 Jun 30.

Abstract

BACKGROUND

fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal.

NEW METHODS

We present temporal multivariate pattern analysis (tMVPA), a method for investigating the temporal evolution of neural representations in fMRI data, computed on single-trial BOLD time-courses, leveraging both spatial and temporal components of the fMRI signal. We implemented an expanding sliding window approach that allows identifying the time-window of an effect.

RESULTS

We demonstrate that tMVPA can successfully detect condition-specific multivariate modulations over time, in the absence of mean BOLD amplitude differences. Using Monte-Carlo simulations and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at the group and single-subject levels, FWER was either at or significantly below 5%. We reached the desired power with 18 subjects and 12 trials for the group level, and with 14 trials in the single-subject scenario.

COMPARISON WITH EXISTING METHODS

We compare the tMVPA statistical evaluation to that of a linear support vector machine (SVM). SVM outperformed tMVPA with large N and trial numbers. Conversely, tMVPA, leveraging on single trials analyses, outperformed SVM in low N and trials and in a single-subject scenario.

CONCLUSION

Recent evidence suggesting that the BOLD signal carries finer-grained temporal information than previously thought, advocates the need for analytical tools, such as tMVPA, tailored to investigate BOLD temporal dynamics. The comparable performance between tMVPA and SVM, a powerful and reliable tool for fMRI, supports the validity of our technique.

摘要

背景

功能磁共振成像(fMRI)提供了无与伦比的空间分辨率,但其时间动态通常由于血液动力学信号的迟缓而被忽略。

新方法

我们提出了时变多变量模式分析(tMVPA),这是一种在 fMRI 数据中研究神经表示的时间演化的方法,该方法基于单试次 BOLD 时间序列计算,利用 fMRI 信号的空间和时间成分。我们实现了一种扩展的滑动窗口方法,允许识别效应的时间窗口。

结果

我们证明 tMVPA 可以成功地检测到时间上的条件特异性多变量调制,而无需平均 BOLD 幅度差异。使用蒙特卡罗模拟和合成数据,我们量化了组级和单级的假阳性率(FWER)和统计功效。无论是在组级还是单级水平,FWER 要么达到要么显著低于 5%。我们在组级达到 18 个被试和 12 个试次的期望功效,在单级达到 14 个试次的期望功效。

与现有方法的比较

我们将 tMVPA 的统计评估与线性支持向量机(SVM)的评估进行了比较。SVM 在大 N 和试次数时优于 tMVPA。相反,tMVPA 利用单试次分析,在低 N 和试次以及单级场景中优于 SVM。

结论

最近的证据表明,BOLD 信号比以前认为的携带更精细的时间信息,因此需要分析工具,如 tMVPA,专门用于研究 BOLD 时间动态。tMVPA 和 SVM 的性能相当,SVM 是 fMRI 的一种强大可靠的工具,支持我们技术的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9986/6447290/508867d3ade1/nihms-1005014-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验