Chaudan Elodie, Kim Jongwook, Tusseau-Nenez Sandrine, Goldner Philippe, Malta Oscar L, Peretti Jacques, Gacoin Thierry
Laboratoire de Physique de la Matière Condensée , Ecole Polytechnique, CNRS, Université Paris-Saclay , 91128 Palaiseau , France.
PSL Research University , Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris , 75005 Paris , France.
J Am Chem Soc. 2018 Aug 1;140(30):9512-9517. doi: 10.1021/jacs.8b03983. Epub 2018 Jul 17.
Lanthanide elements exhibit highly appealing spectroscopic properties that are extensively used for phosphor applications. Their luminescence contains precise information on the internal structure of the host materials. Especially, the polarization behavior of the transition sublevel peaks is a fingerprint of the crystal phase, symmetry, and defects. However, this unique feature is poorly explored in current research on lanthanide nanophosphors. We here report on a detailed investigation of the evolution of Eu luminescence during the thermally induced phase transition of LaPO nanocrystal hosts. By means of c-axis-aligned nanocrystal assemblies, we demonstrate a dramatic change of the emission polarization feature corresponding to the distinct Eu site symmetries in different LaPO polymorphs. We also show that changes of the nanocrystal structure can be identified by this spectroscopic method, with a much higher sensitivity than the X-ray diffraction analysis. This new insight into the nanostructure-luminescence relationship, associated with the unprecedented polarization characterizations, provides a new methodology to investigate phase transitions in nanomaterials. It also suggests a novel function of lanthanide emitters as orientation-sensing nanoprobes for innovative applications such as in bioimaging or microfluidics.
镧系元素具有极具吸引力的光谱特性,被广泛应用于磷光体领域。它们的发光包含了有关主体材料内部结构的精确信息。特别是,跃迁子能级峰的极化行为是晶体相、对称性和缺陷的一个特征标志。然而,在当前关于镧系纳米磷光体的研究中,这一独特特性尚未得到充分探索。我们在此报告了对LaPO纳米晶体主体热诱导相变过程中Eu发光演变的详细研究。通过c轴取向的纳米晶体组件,我们展示了与不同LaPO多晶型中不同Eu位点对称性相对应的发射极化特征的显著变化。我们还表明,通过这种光谱方法可以识别纳米晶体结构的变化,其灵敏度比X射线衍射分析高得多。这种对纳米结构 - 发光关系的新认识,结合前所未有的极化表征,为研究纳米材料中的相变提供了一种新方法。它还暗示了镧系发光体作为用于生物成像或微流体等创新应用的取向传感纳米探针的新功能。