Suppr超能文献

肌球蛋白马达驱动疟原虫入侵红细胞但不驱动其出芽。

The Actinomyosin Motor Drives Malaria Parasite Red Blood Cell Invasion but Not Egress.

机构信息

Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.

Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom.

出版信息

mBio. 2018 Jul 3;9(4):e00905-18. doi: 10.1128/mBio.00905-18.

Abstract

Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete , a primary component of the glideosome, in asexual blood stages of Our results confirm the essential nature of GAP45 for invasion but show that does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Clinical malaria results from cycles of replication of single-celled parasites of the genus in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress.

摘要

疟原虫是专性细胞内寄生虫,能够主动入侵、在宿主细胞内复制并离开宿主细胞。寄生虫肌动球蛋白为基础的分子马达复合物(通常称为滑行肌)被认为是寄生虫运动和毒力的重要介质。成熟的细胞内寄生虫在离开宿主细胞之前通常变得活跃,在某些属中,这种运动对于成功离开以及随后侵入新的宿主细胞是重要的。为了确定肌动球蛋白为基础的运动是否对疟原虫红细胞外逸和入侵活动很重要,我们已经使用条件遗传方法在无性血期的 中删除了滑行肌的主要成分 。我们的结果证实了 GAP45 对入侵的重要性,但表明 不需要功能性的运动复合物来从红细胞中逸出。因此,疟原虫的外逸与相关的顶复门生物 中的诱导外逸在根本上有区别。临床疟疾是由属的单细胞寄生虫在红细胞中的复制循环引起的。细胞内寄生虫的复制之后是一个高度调控的、依赖蛋白酶的过程,称为外逸,在这个过程中,边界膜的破裂允许母裂殖子的爆炸性释放,这些裂殖子迅速侵入新鲜的红细胞。寄生虫肌动球蛋白为基础的分子马达(滑行肌)被认为提供了驱动入侵的机械力。对相关寄生虫的研究表明,诱导的外逸需要寄生虫的运动,这是由功能性滑行肌介导的。然而,滑行肌在疟原虫裂殖子从红细胞中的外逸中是否具有类似的重要作用尚不清楚。在这里,我们表明,尽管功能性滑行肌是疟原虫裂殖子入侵红细胞所必需的,但它不是外逸所必需的。这些发现进一步强调了蛋白酶级联在疟原虫外逸中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c87/6030552/65f1796fbec9/mbo0041839600001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验