Harris R B, Wilson I B
Int J Pept Protein Res. 1985 Jul;26(1):78-82. doi: 10.1111/j.1399-3011.1985.tb03180.x.
We recently found and partially purified a new membrane-bound metallo dipeptidyl dipeptidase from bovine atrial tissue homogenates (Harris, R.B. & Wilson, I.B. (1984) Arch. Biochem. Biophys. 233, 667-675). We suggested that this enzyme was capable of cleaving the dipeptide, phenylalanyl-arginine from the C-terminus of atriopeptin II to give atriopeptin I. The atriopeptins are two atrial natriuretic peptides and the existence of the atrial peptide system has implicated the mammalian heart as an endocrine organ. The tetrapeptide benzoyl-glycyl-seryl-phenylalanyl-arginine was synthesized because it contains the C-terminal tripeptide sequence of atriopeptin II and should be useful to test the roles of the atrial enzyme and angiotensin I-converting enzyme in processing the atrial peptides. We found that for the atrial enzyme, Vmax was 13-fold higher and Km 7-fold-lower for this stand-in substrate than for benzoyl-glycyl-histidyl-leucine, a standard substrate used to measure converting enzyme activity. The ratio of Vmax/Km as a measure of substrate specificity indicates that the stand-in substrate is 86-fold better than benzoyl-glycyl-histidyl-leucine. In contrast, the stand-in substrate is a 20-fold poorer substrate for the converting enzyme than benzoyl-glycyl-histidyl-leucine. With the stand-in substrate, the converting enzyme showed pronounced substrate inhibition. An effective Vmax and Km were calculated using only concentrations of S below the optimum substrate concentration. These results confirm that the atrial enzyme is distinct from the converting enzyme. They also suggest that the conversion of atriopeptin II to atriopeptin I is a physiological process that is mediated by this enzyme.