Suppr超能文献

一种破坏 RAS 质膜定位的蒽醌衍生物可抑制癌细胞生长。

An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth.

机构信息

From the Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, Texas 77030.

the Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, and.

出版信息

J Biol Chem. 2018 Aug 31;293(35):13696-13706. doi: 10.1074/jbc.RA118.003907. Epub 2018 Jul 3.

Abstract

Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examine the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalizes HRAS and KRAS from the PM with similar potency and disrupts the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization of cholera toxin, indicating suppression of recycling endosome function. In searching for the mechanism of impaired endosomal recycling we observed that G01 also enhanced cellular sphingomyelin (SM) and ceramide levels and disrupted the localization of several lipid and cholesterol reporters, suggesting that the G01 molecular target may involve SM metabolism. Indeed, G01 exhibited potent synergy with other compounds that target SM metabolism in KRAS localization assays. Furthermore, G01 significantly abrogated RAS-RAF-MAPK signaling in Madin-Darby canine kidney (MDCK) cells expressing constitutively activated, oncogenic mutant RASG12V. G01 also inhibited the proliferation of RAS-less mouse embryo fibroblasts expressing oncogenic mutant KRASG12V or KRASG12D but not RAS-less mouse embryo fibroblasts expressing oncogenic mutant BRAFV600E. Consistent with these effects, G01 selectively inhibited the proliferation of KRAS-transformed pancreatic, colon, and endometrial cancer cells. Taken together, these results suggest that G01 should undergo further evaluation as a potential anti-RAS therapeutic.

摘要

致癌性 RAS 蛋白通常在人类癌症中表达。为了发挥功能,RAS 蛋白必须经历翻译后修饰并定位于质膜(PM)。因此,防止 RAS PM 靶向的化合物具有作为潜在 RAS 抑制剂的潜力。在这里,我们研究了最近描述的 KRAS PM 定位抑制剂黄烷醌 G01(G01)的作用机制。我们表明,G01 以相似的效力将 HRAS 和 KRAS 从 PM 中错误定位,并破坏了留在 PM 上的 RAS 蛋白的空间组织。G01 还抑制了表皮生长因子受体和转铁蛋白受体的循环,但不损害霍乱毒素的内化,表明抑制了循环内体功能。在寻找受损的内体循环的机制时,我们观察到 G01 还增强了细胞神经鞘磷脂(SM)和神经酰胺水平,并破坏了几种脂质和胆固醇报告器的定位,表明 G01 的分子靶标可能涉及 SM 代谢。事实上,G01 在 KRAS 定位测定中与其他靶向 SM 代谢的化合物表现出很强的协同作用。此外,G01 显著阻断了表达组成性激活的致癌性突变 RASG12V 的 Madin-Darby 犬肾(MDCK)细胞中的 RAS-RAF-MAPK 信号。G01 还抑制了表达致癌性突变 KRASG12V 或 KRASG12D 的 RAS 缺失小鼠胚胎成纤维细胞的增殖,但不抑制表达致癌性突变 BRAFV600E 的 RAS 缺失小鼠胚胎成纤维细胞的增殖。与这些作用一致,G01 选择性抑制了 KRAS 转化的胰腺、结肠和子宫内膜癌细胞的增殖。总之,这些结果表明 G01 应该作为一种潜在的抗 RAS 治疗药物进行进一步评估。

相似文献

1
An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth.
J Biol Chem. 2018 Aug 31;293(35):13696-13706. doi: 10.1074/jbc.RA118.003907. Epub 2018 Jul 3.
2
Acylpeptide hydrolase is a novel regulator of KRAS plasma membrane localization and function.
J Cell Sci. 2019 Jul 31;132(15):jcs232132. doi: 10.1242/jcs.232132.
3
Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission.
Mol Cell Biol. 2013 Jan;33(2):237-51. doi: 10.1128/MCB.00884-12. Epub 2012 Nov 5.
4
Sphingomyelin Metabolism Is a Regulator of K-Ras Function.
Mol Cell Biol. 2018 Jan 16;38(3). doi: 10.1128/MCB.00373-17. Print 2018 Feb 1.
5
Avicin G is a potent sphingomyelinase inhibitor and blocks oncogenic K- and H-Ras signaling.
Sci Rep. 2020 Jun 4;10(1):9120. doi: 10.1038/s41598-020-65882-5.
6
Chalcones bearing a 3,4,5-trimethoxyphenyl motif are capable of selectively inhibiting oncogenic K-Ras signaling.
Bioorg Med Chem Lett. 2020 Jun 1;30(11):127144. doi: 10.1016/j.bmcl.2020.127144. Epub 2020 Mar 28.
7
IκBα kinase inhibitor BAY 11-7082 promotes anti-tumor effect in RAS-driven cancers.
J Transl Med. 2024 Jul 9;22(1):642. doi: 10.1186/s12967-024-05384-4.
8
Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity.
Nat Commun. 2021 Sep 9;12(1):5248. doi: 10.1038/s41467-021-25523-5.

引用本文的文献

1
MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202403126. Epub 2025 May 2.
3
MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids.
bioRxiv. 2025 Feb 13:2024.01.22.576612. doi: 10.1101/2024.01.22.576612.
4
A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95.
Life Sci Alliance. 2023 Sep 4;6(11). doi: 10.26508/lsa.202302094. Print 2023 Nov.
5
Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway.
Int J Mol Sci. 2023 Apr 17;24(8):7373. doi: 10.3390/ijms24087373.
6
Bioinformatics analysis of key biomarkers for bladder cancer.
Biomed Rep. 2022 Dec 16;18(2):14. doi: 10.3892/br.2022.1596. eCollection 2023 Feb.
7
Validation of a small molecule inhibitor of PDE6D-RAS interaction with favorable anti-leukemic effects.
Blood Cancer J. 2022 Apr 14;12(4):64. doi: 10.1038/s41408-022-00663-z.
8
Anthraquinones as Inhibitors of SOS RAS-GEF Activity.
Biomolecules. 2021 Jul 30;11(8):1128. doi: 10.3390/biom11081128.
9
Ras Variant Biology and Contributions to Human Disease.
Methods Mol Biol. 2021;2262:3-18. doi: 10.1007/978-1-0716-1190-6_1.
10
Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells.
Cancers (Basel). 2020 Sep 20;12(9):2683. doi: 10.3390/cancers12092683.

本文引用的文献

1
Sphingomyelin Metabolism Is a Regulator of K-Ras Function.
Mol Cell Biol. 2018 Jan 16;38(3). doi: 10.1128/MCB.00373-17. Print 2018 Feb 1.
2
Drugging RAS: Know the enemy.
Science. 2017 Mar 17;355(6330):1158-1163. doi: 10.1126/science.aam7622. Epub 2017 Mar 16.
3
Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output.
Cell. 2017 Jan 12;168(1-2):239-251.e16. doi: 10.1016/j.cell.2016.11.059. Epub 2016 Dec 29.
5
VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking.
J Cell Biol. 2016 Aug 15;214(4):445-58. doi: 10.1083/jcb.201604061. Epub 2016 Aug 8.
6
Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.
Mol Cell Biol. 2015 Nov 16;36(2):363-74. doi: 10.1128/MCB.00719-15. Print 2016 Jan 15.
7
Drugging the undruggable RAS: Mission possible?
Nat Rev Drug Discov. 2014 Nov;13(11):828-51. doi: 10.1038/nrd4389. Epub 2014 Oct 17.
8
Ras nanoclusters: Versatile lipid-based signaling platforms.
Biochim Biophys Acta. 2015 Apr;1853(4):841-9. doi: 10.1016/j.bbamcr.2014.09.008. Epub 2014 Sep 16.
9
Rare Streptomyces sp. polyketides as modulators of K-Ras localisation.
Org Biomol Chem. 2014 Jul 21;12(27):4872-8. doi: 10.1039/c4ob00745j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验