Irie Milena Suemi, Rabelo Gustavo Davi, Spin-Neto Rubens, Dechichi Paula, Borges Juliana Simeão, Soares Priscilla Barbosa Ferreira
Department of Periodontology and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.
Braz Dent J. 2018 May-Jun;29(3):227-238. doi: 10.1590/0103-6440201801979.
Micro computed tomography (µCT) follows the same principle of computed-tomography used for patients, however providing higher-resolution. Using a non-destructive approach, samples can be scanned, and each section obtained is used to build a volume using tridimensional reconstruction. For bone analysis, it is possible to obtain information about the tissue's microarchitecture and composition. According to the characteristics of the bone sample (e.g. human or animal origin, long or irregular shape, epiphysis or diaphysis region) the pre-scanning parameters must be defined. The resolution (i.e. voxel size) should be chosen taking into account the features that will be evaluated, and the necessity to identify inner structures (e.g. bone channels and osteocyte lacunae). The region of interest should be delimited, and the threshold that defines the bone tissue set in order to proceed with binarization to separate the voxels representing bone from the other structures (channels, resorption areas, and medullary space). Cancellous bone is evaluated by means of the trabeculae characteristics and their connectivity. The cortex is evaluated in relation to the thickness and porosity. Bone mineral density can also be measured, by the amount of hydroxyapatite. Other parameters such as structure-model-index, anisotropy, and fractal dimension can be assessed. In conclusion, intrinsic and extrinsic determinants of bone quality can be assessed by µCT. In dentistry, this method can be used for evaluating bone loss, alterations in bone metabolism, or the effects of using drugs that impair bone remodeling, and also to assess the success rate of bone repair or surgical procedures.
微计算机断层扫描(µCT)遵循与用于患者的计算机断层扫描相同的原理,但能提供更高的分辨率。采用非破坏性方法,可以对样本进行扫描,通过三维重建,利用获得的每一个切片构建一个三维体积。对于骨分析,可以获取有关组织微观结构和组成的信息。根据骨样本的特征(例如人类或动物来源、长形或不规则形状、骨骺或骨干区域),必须定义预扫描参数。分辨率(即体素大小)的选择应考虑要评估的特征以及识别内部结构(例如骨通道和骨细胞陷窝)的必要性。应划定感兴趣区域,并设定定义骨组织的阈值,以便进行二值化处理,将代表骨的体素与其他结构(通道、吸收区域和骨髓腔)分开。通过小梁特征及其连通性来评估松质骨。根据厚度和孔隙率来评估皮质骨。骨矿物质密度也可以通过羟基磷灰石的含量来测量。还可以评估其他参数,如结构模型指数、各向异性和分形维数。总之,µCT可以评估骨质量的内在和外在决定因素。在牙科领域,这种方法可用于评估骨质流失、骨代谢变化、或使用损害骨重塑的药物的效果,还可用于评估骨修复或外科手术的成功率。