Yale School of Medicine, New Haven, CT, USA.
Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
Addiction. 2018 Dec;113(12):2214-2224. doi: 10.1111/add.14374. Epub 2018 Aug 1.
Longitudinal electronic health record (EHR) data offer a large-scale, untapped source of phenotypical information on harmful alcohol use. Using established, alcohol-associated variants in the gene that encodes the enzyme alcohol dehydrogenase 1B (ADH1B) as criterion standards, we compared the individual and combined validity of three longitudinal EHR-based phenotypes of harmful alcohol use: Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) trajectories; mean age-adjusted AUDIT-C; and diagnoses of alcohol use disorder (AUD).
With longitudinal EHR data from the Million Veteran Program (MVP) linked to genetic data, we used two population-specific polymorphisms in ADH1B that are associated strongly with AUD in African Americans (AAs) and European Americans (EAs): rs2066702 (Arg369Cys, AAs) and rs1229984 (Arg48His, EAs) as criterion measures.
United States Department of Veterans Affairs Healthcare System.
A total of 167 721 veterans (57 677 AAs and 110 044 EAs; 92% male, mean age = 63 years) took part in this study. Data were collected from 1 October 2007 to 1 May 2017.
Using all AUDIT-C scores and AUD diagnostic codes recorded in the EHR, we calculated age-adjusted mean AUDIT-C values, longitudinal statistical trajectories of AUDIT-C scores and ICD-9/10 diagnostic groupings for AUD.
A total of 19 793 AAs (34.3%) had one or two minor alleles at rs2066702 [minor allele frequency (MAF) = 0.190] and 6933 EAs (6.3%) had one or two minor alleles at rs1229984 (MAF = 0.032). In both populations, trajectories and age-adjusted mean AUDIT-C were correlated (r = 0.90) but, when considered separately, highest score (8+ versus 0) of age-adjusted mean AUDIT-C demonstrated a stronger association with the ADH1B variants [adjusted odds ratio (aOR) 0.54 in AAs and 0.37 in AAs] than did the highest trajectory (aOR 0.71 in AAs and 0.53 in EAs); combining AUDIT-C metrics did not improve discrimination. When age-adjusted mean AUDIT-C score and AUD diagnoses were considered together, age-adjusted mean AUDIT-C (8+ versus 0) was associated with lower odds of having the ADH1B minor allele than were AUD diagnostic codes: aOR = 0.59 versus 0.86 in AAs and 0.48 versus 0.68 in EAs. These independent associations combine to yield an even lower aOR of 0.51 for AAs and 0.33 for EAs.
The age-adjusted mean AUDIT-C score is associated more strongly with genetic polymorphisms of known risk for alcohol use disorder than are longitudinal trajectories of AUDIT-C or AUD diagnostic codes. AUD diagnostic codes modestly enhance this association.
纵向电子健康记录 (EHR) 数据提供了大量未经开发的有害酒精使用表型信息来源。使用编码醇脱氢酶 1B (ADH1B) 的基因中与酒精相关的既定变体作为标准,我们比较了三种基于纵向 EHR 的有害酒精使用的个体和联合有效性:酒精使用障碍识别测试-消耗 (AUDIT-C) 轨迹;平均年龄调整后的 AUDIT-C;以及酒精使用障碍 (AUD) 的诊断。
利用来自百万退伍军人计划 (MVP) 的纵向 EHR 数据与遗传数据相关联,我们使用两种与非裔美国人 (AA) 和欧洲裔美国人 (EA) 中的 AUD 强烈相关的 ADH1B 中的特定于人群的两个多态性:rs2066702(Arg369Cys,AA)和 rs1229984(Arg48His,EA)作为标准措施。
美国退伍军人事务部医疗保健系统。
共有 167721 名退伍军人(57677 名 AA 和 110044 名 EA;92%为男性,平均年龄 63 岁)参加了这项研究。数据收集于 2007 年 10 月 1 日至 2017 年 5 月 1 日。
使用 EHR 中记录的所有 AUDIT-C 分数和 AUD 诊断代码,我们计算了年龄调整后的平均 AUDIT-C 值、AUDIT-C 分数的纵向统计轨迹和 AUD 的 ICD-9/10 诊断分组。
共有 19793 名 AA(34.3%)在 rs2066702 处有一个或两个次要等位基因 [次要等位基因频率 (MAF) = 0.190],6933 名 EA(6.3%)在 rs1229984 处有一个或两个次要等位基因(MAF=0.032)。在这两个群体中,轨迹和年龄调整后的平均 AUDIT-C 相关(r=0.90),但单独考虑时,年龄调整后的平均 AUDIT-C 的最高评分(8+与 0)与 ADH1B 变体的关联更强[AA 的调整后优势比 (aOR) 为 0.54,EA 的 aOR 为 0.37],而最高轨迹(AA 的 aOR 为 0.71,EA 的 aOR 为 0.53);结合 AUDIT-C 指标并不能提高鉴别力。当同时考虑年龄调整后的平均 AUDIT-C 评分和 AUD 诊断时,年龄调整后的平均 AUDIT-C(8+与 0)与携带 ADH1B 次要等位基因的几率较低相关,而不是 AUD 诊断代码:AA 的 aOR 为 0.59,EA 的 aOR 为 0.86;AA 的 aOR 为 0.48,EA 的 aOR 为 0.68。这些独立的关联结合起来,AA 的 aOR 为 0.51,EA 的 aOR 为 0.33。
年龄调整后的平均 AUDIT-C 评分与已知酒精使用障碍风险的基因多态性的关联比 AUDIT-C 的纵向轨迹或 AUD 诊断代码更密切。AUD 诊断代码适度增强了这种关联。