Justice Amy C, McGinnis Kathleen A, Tate Janet P, Xu Ke, Becker William C, Zhao Hongyu, Gelernter Joel, Kranzler Henry R
Yale School of Medicine, New Haven, Connecticut.
Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.
Alcohol Clin Exp Res. 2017 May;41(5):998-1003. doi: 10.1111/acer.13373. Epub 2017 Apr 10.
Although alcohol risk is heritable, few genetic risk variants have been identified. Longitudinal electronic health record (EHR) data offer a largely untapped source of phenotypic information for genetic studies, but EHR-derived phenotypes for harmful alcohol exposure have yet to be validated. Using a variant of known effect, we used EHR data to develop and validate a phenotype for harmful alcohol exposure that can be used to identify unknown genetic variants in large samples. Herein, we consider the validity of 3 approaches using the 3-item Alcohol Use Disorders Identification Test consumption measure (AUDIT-C) as a phenotype for harmful alcohol exposure.
First, using longitudinal AUDIT-C data from the Veterans Aging Cohort Biomarker Study Cohort (VACS-BC), we compared 3 metrics of AUDIT-C using correlation coefficients: (i) AUDIT-C closest to blood sampling (closest AUDIT-C), (ii) the highest value (highest AUDIT-C), (iii) and longitudinal trajectories generated using joint trajectory modeling (AUDIT-C trajectory). Second, we compared the associations of the 3 AUDIT-C metrics with phosphatidylethanol (PEth), a direct, quantitative biomarker for alcohol in the overall sample using chi-square tests for trend. Last, in the subsample of African Americans (AAs; n = 1,503), we compared the associations of the 3 AUDIT-C metrics with rs2066702 a common missense (Arg369Cys) polymorphism of the ADH1B gene, which encodes an alcohol dehydrogenase isozyme.
The sample (n = 1,851, 94.5% male, 65% HIV+, mean age 52 years) had a median of 7 AUDIT-C scores over a median of 6.1 years. Highest AUDIT-C and AUDIT-C trajectory were correlated r = 0.86. The closest AUDIT-C was obtained a median of 2.26 years after the VACS-BC blood draw. Overall and among AAs, all 3 AUDIT-C metrics were associated with PEth (all p < 0.05), but the gradient was steepest with AUDIT-C trajectory. Among AAs (36% with the protective ADH1B allele), the association of rs2066702 with AUDIT-C trajectory and highest AUDIT-C was statistically significant (p < 0.05), and the gradient was steeper for the AUDIT-C trajectory than for the highest AUDIT-C. The closest AUDIT-C was not statistically significantly associated with rs2066702.
EHR data can be used to identify complex phenotypes such as harmful alcohol use. The validity of the phenotype may be enhanced through the use of longitudinal trajectories.
尽管酒精风险具有遗传性,但已确定的遗传风险变异很少。纵向电子健康记录(EHR)数据为基因研究提供了一个很大程度上未被利用的表型信息来源,但源自EHR的有害酒精暴露表型尚未得到验证。我们使用一个已知效应的变异体,利用EHR数据开发并验证了一种有害酒精暴露表型,该表型可用于在大样本中识别未知的遗传变异。在此,我们以3项酒精使用障碍识别测试消费量测量指标(AUDIT-C)作为有害酒精暴露的表型,探讨三种方法的有效性。
首先,利用退伍军人衰老队列生物标志物研究队列(VACS-BC)的纵向AUDIT-C数据,我们使用相关系数比较了AUDIT-C的三个指标:(i)最接近采血时间的AUDIT-C(最接近的AUDIT-C),(ii)最高值(最高的AUDIT-C),(iii)使用联合轨迹模型生成的纵向轨迹(AUDIT-C轨迹)。其次,我们使用趋势卡方检验比较了这三个AUDIT-C指标与磷脂酰乙醇(PEth)(一种酒精的直接定量生物标志物)在整个样本中的关联。最后,在非裔美国人子样本(n = 1503)中,我们比较了这三个AUDIT-C指标与rs2066702(ADH1B基因的一个常见错义(Arg369Cys)多态性,该基因编码一种酒精脱氢酶同工酶)的关联。
样本(n = 1851,94.5%为男性,65%为HIV阳性,平均年龄52岁)在6.1年的中位数时间内有7个AUDIT-C评分的中位数。最高的AUDIT-C与AUDIT-C轨迹的相关性r = 0.86。最接近的AUDIT-C是在VACS-BC采血后2.26年的中位数时间获得的。在总体样本和非裔美国人中,所有三个AUDIT-C指标均与PEth相关(所有p < 0.05),但与AUDIT-C轨迹的梯度最陡。在非裔美国人中(36%携带保护性ADH1B等位基因),rs2066702与AUDIT-C轨迹和最高AUDIT-C的关联具有统计学意义(p < 0.05),且AUDIT-C轨迹的梯度比最高AUDIT-C的梯度更陡。最接近的AUDIT-C与rs2066702无统计学显著关联。
EHR数据可用于识别有害酒精使用等复杂表型。通过使用纵向轨迹,表型的有效性可能会得到提高。