Suppr超能文献

核磁共振测量揭示了致病突变导致转甲状腺素蛋白不稳定的结构基础。

NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations.

作者信息

Leach Benjamin I, Zhang Xin, Kelly Jeffery W, Dyson H Jane, Wright Peter E

机构信息

Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.

Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.

出版信息

Biochemistry. 2018 Jul 31;57(30):4421-4430. doi: 10.1021/acs.biochem.8b00642. Epub 2018 Jul 18.

Abstract

Inherited mutations of transthyretin (TTR) destabilize its structure, leading to aggregation and familial amyloid disease. Although numerous crystal structures of wild-type (WT) and mutant TTRs have been determined, they have failed to yield a comprehensive structural explanation for destabilization by pathogenic mutations. To identify structural and dynamic variations that are not readily observed in the crystal structures, we used NMR to study WT TTR and three kinetically and/or thermodynamically destabilized pathogenic variants (V30M, L55P, and V122I). Sequence-corrected chemical shifts reveal important structural differences between WT and mutant TTR. The L55P mutation linked to aggressive early onset cardiomyopathy and polyneuropathy induces substantial structural perturbations in both the DAGH and CBEF β-sheets, whereas the V30M polyneuropathy-linked substitution perturbs primarily the CBEF sheet. In both variants, the structural perturbations propagate across the entire width of the β-sheets from the site of mutation. Structural changes caused by the V122I cardiomyopathy-associated mutation are restricted to the immediate vicinity of the mutation site, directly perturbing the subunit interfaces. NMR relaxation dispersion measurements show that WT TTR and the three pathogenic variants undergo millisecond time scale conformational fluctuations to populate a common excited state with an altered structure in the subunit interfaces. The excited state is most highly populated in L55P. The combined application of chemical shift analysis and relaxation dispersion to these pathogenic variants reveals differences in ground state structure and in the population of a transient excited state that potentially facilitates tetramer dissociation, providing new insights into the molecular mechanism by which mutations promote TTR amyloidosis.

摘要

转甲状腺素蛋白(TTR)的遗传性突变会破坏其结构的稳定性,导致聚集并引发家族性淀粉样变性疾病。尽管已经确定了野生型(WT)和突变型TTR的众多晶体结构,但它们未能对致病性突变导致的结构不稳定给出全面的结构解释。为了识别在晶体结构中不易观察到的结构和动态变化,我们使用核磁共振(NMR)研究了WT TTR以及三种在动力学和/或热力学上不稳定的致病性变体(V30M、L55P和V122I)。经序列校正的化学位移揭示了WT和突变型TTR之间重要的结构差异。与侵袭性早发性心肌病和多发性神经病相关的L55P突变在DAGH和CBEFβ-折叠片中均引起了显著的结构扰动,而与多发性神经病相关的V30M替代主要扰动了CBEF折叠片。在这两种变体中,结构扰动从突变位点开始在β-折叠片整个宽度上传播。由V122I心肌病相关突变引起的结构变化仅限于突变位点的紧邻区域,直接扰动了亚基界面。NMR弛豫色散测量表明,WT TTR和这三种致病性变体经历毫秒时间尺度的构象波动,以形成亚基界面结构改变的共同激发态。激发态在L55P中占据比例最高。对这些致病性变体联合应用化学位移分析和弛豫色散揭示了基态结构以及可能促进四聚体解离的瞬态激发态占据比例的差异,为突变促进TTR淀粉样变性的分子机制提供了新的见解。

相似文献

1
NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations.
Biochemistry. 2018 Jul 31;57(30):4421-4430. doi: 10.1021/acs.biochem.8b00642. Epub 2018 Jul 18.
3
Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation.
Biochemistry. 2017 Sep 12;56(36):4808-4818. doi: 10.1021/acs.biochem.7b00658. Epub 2017 Aug 30.
7
Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner.
Biochemistry. 2017 Oct 17;56(41):5570-5581. doi: 10.1021/acs.biochem.7b00815. Epub 2017 Sep 28.
8
Kinetic analysis of the multistep aggregation pathway of human transthyretin.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6201-E6208. doi: 10.1073/pnas.1807024115. Epub 2018 Jun 18.
9
Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR.
Biochemistry. 2016 Apr 5;55(13):1941-4. doi: 10.1021/acs.biochem.6b00164. Epub 2016 Mar 23.

引用本文的文献

1
Design and Mechanistic Analysis of a Potent Bivalent Inhibitor of Transthyretin Amyloid Fibrillogenesis.
J Med Chem. 2025 Jun 12;68(11):11543-11571. doi: 10.1021/acs.jmedchem.5c00430. Epub 2025 May 27.
2
Aggregation of Transthyretin by Fluid Agitation.
bioRxiv. 2024 Nov 11:2024.11.08.622726. doi: 10.1101/2024.11.08.622726.
4
Characterization of Transthyretin Mutation G47V Associated with Hereditary Cardiac Amyloidosis.
Cardiology. 2024;149(4):383-395. doi: 10.1159/000538081. Epub 2024 Mar 4.
6
Biochemical and biophysical properties of a rare TTRA81V mutation causing mild transthyretin amyloid cardiomyopathy.
ESC Heart Fail. 2024 Feb;11(1):112-125. doi: 10.1002/ehf2.14543. Epub 2023 Oct 12.
7
Thyroxine metabolite-derived 3-iodothyronamine (T1AM) and synthetic analogs as efficient suppressors of transthyretin amyloidosis.
Comput Struct Biotechnol J. 2023 Sep 26;21:4717-4728. doi: 10.1016/j.csbj.2023.09.028. eCollection 2023.
9
Role of conformational dynamics in pathogenic protein aggregation.
Curr Opin Chem Biol. 2023 Apr;73:102280. doi: 10.1016/j.cbpa.2023.102280. Epub 2023 Mar 4.

本文引用的文献

1
POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins.
J Biomol NMR. 2018 Mar;70(3):141-165. doi: 10.1007/s10858-018-0166-5. Epub 2018 Feb 5.
2
Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation.
Biochemistry. 2017 Sep 12;56(36):4808-4818. doi: 10.1021/acs.biochem.7b00658. Epub 2017 Aug 30.
3
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid.
Biochemistry. 2016 Sep 20;55(37):5272-8. doi: 10.1021/acs.biochem.6b00649. Epub 2016 Sep 7.
4
Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR.
Biochemistry. 2016 Apr 5;55(13):1941-4. doi: 10.1021/acs.biochem.6b00164. Epub 2016 Mar 23.
5
Uncovering the Mechanism of Aggregation of Human Transthyretin.
J Biol Chem. 2015 Nov 27;290(48):28932-43. doi: 10.1074/jbc.M115.659912. Epub 2015 Oct 12.
6
NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy.
Bioinformatics. 2015 Apr 15;31(8):1325-7. doi: 10.1093/bioinformatics/btu830. Epub 2014 Dec 12.
7
Conformational flexibility tunes the propensity of transthyretin to form fibrils through non-native intermediate states.
Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12781-4. doi: 10.1002/anie.201407323. Epub 2014 Sep 22.
8
Accurate scoring of non-uniform sampling schemes for quantitative NMR.
J Magn Reson. 2014 Sep;246:31-5. doi: 10.1016/j.jmr.2014.06.020. Epub 2014 Jul 2.
9
Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE.
J Biomol NMR. 2013 Jul;56(3):275-83. doi: 10.1007/s10858-013-9747-5. Epub 2013 Jun 11.
10
Localized structural fluctuations promote amyloidogenic conformations in transthyretin.
J Mol Biol. 2013 Mar 25;425(6):977-88. doi: 10.1016/j.jmb.2013.01.008. Epub 2013 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验