Leach Benjamin I, Zhang Xin, Kelly Jeffery W, Dyson H Jane, Wright Peter E
Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.
Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.
Biochemistry. 2018 Jul 31;57(30):4421-4430. doi: 10.1021/acs.biochem.8b00642. Epub 2018 Jul 18.
Inherited mutations of transthyretin (TTR) destabilize its structure, leading to aggregation and familial amyloid disease. Although numerous crystal structures of wild-type (WT) and mutant TTRs have been determined, they have failed to yield a comprehensive structural explanation for destabilization by pathogenic mutations. To identify structural and dynamic variations that are not readily observed in the crystal structures, we used NMR to study WT TTR and three kinetically and/or thermodynamically destabilized pathogenic variants (V30M, L55P, and V122I). Sequence-corrected chemical shifts reveal important structural differences between WT and mutant TTR. The L55P mutation linked to aggressive early onset cardiomyopathy and polyneuropathy induces substantial structural perturbations in both the DAGH and CBEF β-sheets, whereas the V30M polyneuropathy-linked substitution perturbs primarily the CBEF sheet. In both variants, the structural perturbations propagate across the entire width of the β-sheets from the site of mutation. Structural changes caused by the V122I cardiomyopathy-associated mutation are restricted to the immediate vicinity of the mutation site, directly perturbing the subunit interfaces. NMR relaxation dispersion measurements show that WT TTR and the three pathogenic variants undergo millisecond time scale conformational fluctuations to populate a common excited state with an altered structure in the subunit interfaces. The excited state is most highly populated in L55P. The combined application of chemical shift analysis and relaxation dispersion to these pathogenic variants reveals differences in ground state structure and in the population of a transient excited state that potentially facilitates tetramer dissociation, providing new insights into the molecular mechanism by which mutations promote TTR amyloidosis.
转甲状腺素蛋白(TTR)的遗传性突变会破坏其结构的稳定性,导致聚集并引发家族性淀粉样变性疾病。尽管已经确定了野生型(WT)和突变型TTR的众多晶体结构,但它们未能对致病性突变导致的结构不稳定给出全面的结构解释。为了识别在晶体结构中不易观察到的结构和动态变化,我们使用核磁共振(NMR)研究了WT TTR以及三种在动力学和/或热力学上不稳定的致病性变体(V30M、L55P和V122I)。经序列校正的化学位移揭示了WT和突变型TTR之间重要的结构差异。与侵袭性早发性心肌病和多发性神经病相关的L55P突变在DAGH和CBEFβ-折叠片中均引起了显著的结构扰动,而与多发性神经病相关的V30M替代主要扰动了CBEF折叠片。在这两种变体中,结构扰动从突变位点开始在β-折叠片整个宽度上传播。由V122I心肌病相关突变引起的结构变化仅限于突变位点的紧邻区域,直接扰动了亚基界面。NMR弛豫色散测量表明,WT TTR和这三种致病性变体经历毫秒时间尺度的构象波动,以形成亚基界面结构改变的共同激发态。激发态在L55P中占据比例最高。对这些致病性变体联合应用化学位移分析和弛豫色散揭示了基态结构以及可能促进四聚体解离的瞬态激发态占据比例的差异,为突变促进TTR淀粉样变性的分子机制提供了新的见解。