Suppr超能文献

HIV-1 包膜 gp41 跨膜域动力学受脂质、水和离子相互作用的调节。

HIV-1 Env gp41 Transmembrane Domain Dynamics Are Modulated by Lipid, Water, and Ion Interactions.

机构信息

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia.

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.

出版信息

Biophys J. 2018 Jul 3;115(1):84-94. doi: 10.1016/j.bpj.2018.05.022.

Abstract

The gp41 transmembrane domain (TMD) of the envelope glycoprotein of the human immunodeficiency virus modulates the conformation of the viral envelope spike, the only druggable target on the surface of the virion. Targeting the envelope glycoprotein with small-molecule and antibody therapies requires an understanding of gp41 TMD dynamics, which is often challenging given the difficulties in describing native membrane properties. Here, atomistic molecular dynamics simulations of a trimeric, prefusion gp41 TMD in a model, asymmetric viral membrane that mimics the native viral envelope were performed. Water and chloride ions were observed to permeate the membrane and interact with the highly conserved arginine bundle, (R696), at the center of the membrane and influenced TMD stability by creating a network of hydrogen bonds and electrostatic interactions. We propose that this (R696) - water - anion network plays an important role in viral fusion with the host cell by modulating protein conformational changes within the membrane. Additionally, R683 and R707 at the exofacial and cytofacial membrane-water interfaces, respectively, are anchored in the lipid headgroup region and serve as a junction point for stabilization of the termini. The membrane thins as a result of the tilting of the gp41 trimer with nearby lipids increasing in volume, leading to an entropic driving force for TMD conformational change. These results provide additional detail and perspective on the influence of certain lipid types on TMD dynamics and a rationale for targeting key residues of the TMD for therapeutic design. These insights into the molecular details of TMD membrane anchoring will build toward a greater understanding of the dynamics that lead to viral fusion with the host cell.

摘要

人类免疫缺陷病毒包膜糖蛋白的 gp41 跨膜域(TMD)调节病毒包膜刺突的构象,这是病毒粒子表面唯一可成药的靶标。使用小分子和抗体疗法靶向包膜糖蛋白需要了解 gp41 TMD 动力学,由于描述天然膜特性具有挑战性,这通常具有一定难度。在此,对模拟天然病毒包膜的模型不对称病毒膜中三聚体、预融合 gp41 TMD 进行了原子分子动力学模拟。观察到水和氯离子渗透到膜中,并与位于膜中心的高度保守的精氨酸束(R696)相互作用,并通过形成氢键和静电相互作用网络来影响 TMD 稳定性。我们提出,该(R696)-水-阴离子网络通过调节膜内蛋白质构象变化,在病毒与宿主细胞融合中发挥重要作用。此外,分别位于外膜和细胞质膜-水界面的 R683 和 R707 锚定在脂质头部区域,充当稳定末端的连接点。由于 gp41 三聚体的倾斜,膜变薄,附近的脂质体积增加,导致 TMD 构象变化的熵驱动力。这些结果提供了关于特定脂质类型对 TMD 动力学影响的更多细节和观点,以及针对 TMD 关键残基进行治疗设计的理由。这些对 TMD 膜锚定分子细节的见解将有助于更好地理解导致病毒与宿主细胞融合的动力学。

相似文献

1
HIV-1 Env gp41 Transmembrane Domain Dynamics Are Modulated by Lipid, Water, and Ion Interactions.
Biophys J. 2018 Jul 3;115(1):84-94. doi: 10.1016/j.bpj.2018.05.022.
2
Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds.
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1259-1271. doi: 10.1016/j.bbamem.2018.02.019. Epub 2018 Feb 23.
3
Stability and Water Accessibility of the Trimeric Membrane Anchors of the HIV-1 Envelope Spikes.
J Am Chem Soc. 2017 Dec 27;139(51):18432-18435. doi: 10.1021/jacs.7b09352. Epub 2017 Dec 4.
4
Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers.
J Biol Chem. 2019 Oct 4;294(40):14732-14744. doi: 10.1074/jbc.RA119.009542. Epub 2019 Aug 13.
5
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22556-22566. doi: 10.1073/pnas.1912427116. Epub 2019 Oct 17.
7
Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers.
J Mol Biol. 2022 Jan 30;434(2):167345. doi: 10.1016/j.jmb.2021.167345. Epub 2021 Nov 8.
9
Characterization of the water defect at the HIV-1 gp41 membrane spanning domain in bilayers with and without cholesterol using molecular simulations.
Biochim Biophys Acta. 2014 May;1838(5):1396-405. doi: 10.1016/j.bbamem.2014.01.009. Epub 2014 Jan 16.
10
The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region.
J Biol Chem. 2015 May 22;290(21):12999-3015. doi: 10.1074/jbc.M115.644351. Epub 2015 Mar 18.

引用本文的文献

2
Viral Membrane Fusion: A Dance Between Proteins and Lipids.
Annu Rev Virol. 2023 Sep 29;10(1):139-161. doi: 10.1146/annurev-virology-111821-093413.
3
Serinc5 Restricts HIV Membrane Fusion by Altering Lipid Order and Heterogeneity in the Viral Membrane.
ACS Infect Dis. 2023 Apr 14;9(4):773-784. doi: 10.1021/acsinfecdis.2c00478. Epub 2023 Mar 22.
4
Viral Membrane Fusion and the Transmembrane Domain.
Viruses. 2020 Jun 27;12(7):693. doi: 10.3390/v12070693.
5
HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies.
Cell Rep. 2020 Apr 28;31(4):107583. doi: 10.1016/j.celrep.2020.107583.
6
Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183134. doi: 10.1016/j.bbamem.2019.183134. Epub 2019 Nov 16.
7
Emerging Diversity in Lipid-Protein Interactions.
Chem Rev. 2019 May 8;119(9):5775-5848. doi: 10.1021/acs.chemrev.8b00451. Epub 2019 Feb 13.

本文引用的文献

1
Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region.
PLoS One. 2018 Jan 18;13(1):e0190658. doi: 10.1371/journal.pone.0190658. eCollection 2018.
2
Tilted, Uninterrupted, Monomeric HIV-1 gp41 Transmembrane Helix from Residual Dipolar Couplings.
J Am Chem Soc. 2018 Jan 10;140(1):34-37. doi: 10.1021/jacs.7b10245. Epub 2017 Dec 27.
3
Stability and Water Accessibility of the Trimeric Membrane Anchors of the HIV-1 Envelope Spikes.
J Am Chem Soc. 2017 Dec 27;139(51):18432-18435. doi: 10.1021/jacs.7b09352. Epub 2017 Dec 4.
4
Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.
Structure. 2017 Nov 7;25(11):1708-1718.e5. doi: 10.1016/j.str.2017.09.010. Epub 2017 Oct 19.
5
Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state.
Nat Commun. 2017 Sep 15;8(1):545. doi: 10.1038/s41467-017-00515-6.
6
Potent and broad HIV-neutralizing antibodies in memory B cells and plasma.
Sci Immunol. 2017 Jan 27;2(7). doi: 10.1126/sciimmunol.aal2200.
7
Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike.
Nature. 2017 Jul 20;547(7663):360-363. doi: 10.1038/nature23010. Epub 2017 Jul 12.
8
Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4477-4482. doi: 10.1073/pnas.1700634114. Epub 2017 Apr 10.
9
The HIV-1 envelope glycoprotein structure: nailing down a moving target.
Immunol Rev. 2017 Jan;275(1):21-32. doi: 10.1111/imr.12507.
10
CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
Nat Methods. 2017 Jan;14(1):71-73. doi: 10.1038/nmeth.4067. Epub 2016 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验