Suppr超能文献

固态核磁共振波谱和分子动力学模拟研究胆固醇与脂质双层中三聚体 HIV 融合蛋白 gp41 的相互作用。

Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.

出版信息

J Mol Biol. 2020 Jul 24;432(16):4705-4721. doi: 10.1016/j.jmb.2020.06.017. Epub 2020 Jun 24.

Abstract

HIV-1 entry into cells is mediated by the fusion protein gp41. Cholesterol plays an important role in this virus-cell fusion, but molecular structural information about cholesterol-gp41 interaction is so far absent. Here, we present experimental and computational data about cholesterol complexation with gp41 in lipid bilayers. We focus on the C-terminal region of the protein, which comprises a membrane-proximal external region (MPER) and the transmembrane domain (TMD). We measured peptide-cholesterol contacts in virus-mimetic lipid bilayers using solid-state NMR spectroscopy, and augmented these experimental data with all-atom molecular dynamics simulations. 2D F NMR spectra show correlation peaks between MPER residues and the cholesterol isooctyl tail, indicating that cholesterol is in molecular contact with the MPER-TMD trimer. F-C distance measurements between the peptide and C-labeled cholesterol show that C17 on the D ring and C9 at the intersection of B and C rings are ~7.0 Å from the F673 side-chain 4-F. At high peptide concentrations in the membrane, the F-C distance data indicate three cholesterol molecules bound near F673 in each trimer. Mutation of a cholesterol recognition amino acid consensus motif did not change these distances, indicating that cholesterol binding does not require this sequence motif. Molecular dynamics simulations further identify two hotspots for cholesterol interactions. Taken together, these experimental data and simulations indicate that the helix-turn-helix conformation of the MPER-TMD is responsible for sequestering cholesterol. We propose that this gp41-cholesterol interaction mediates virus-cell fusion by recruiting gp41 to the boundary of the liquid-disordered and liquid-ordered phases to incur membrane curvature.

摘要

HIV-1 进入细胞是由融合蛋白 gp41 介导的。胆固醇在这种病毒-细胞融合中起着重要作用,但到目前为止,关于胆固醇与 gp41 相互作用的分子结构信息还不清楚。在这里,我们提供了关于胆固醇与脂质双层中 gp41 复合的实验和计算数据。我们专注于蛋白质的 C 端区域,该区域包括膜近端外部区域(MPER)和跨膜结构域(TMD)。我们使用固态 NMR 光谱法测量了病毒模拟脂质双层中肽-胆固醇的接触,并用全原子分子动力学模拟增强了这些实验数据。2D F NMR 光谱显示 MPER 残基与胆固醇异辛基尾部之间存在相关峰,表明胆固醇与 MPER-TMD 三聚体处于分子接触状态。肽和 C 标记胆固醇之间的 F-C 距离测量表明,D 环上的 C17 和 B 环和 C 环相交处的 C9 与 F673 侧链 4-F 的距离约为 7.0 Å。在膜中肽浓度较高时,F-C 距离数据表明每个三聚体中靠近 F673 有三个胆固醇分子结合。胆固醇识别氨基酸共识基序突变并未改变这些距离,表明胆固醇结合不需要该序列基序。分子动力学模拟进一步确定了胆固醇相互作用的两个热点。总之,这些实验数据和模拟表明,MPER-TMD 的螺旋-转角-螺旋构象负责隔离胆固醇。我们提出,这种 gp41-胆固醇相互作用通过将 gp41 募集到无序相和有序相的边界来诱导膜曲率,从而介导病毒-细胞融合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59f/7781112/33ba1ae29800/nihms-1658486-f0001.jpg

相似文献

引用本文的文献

2
Solid-State NMR of Virus Membrane Proteins.病毒膜蛋白的固态核磁共振技术
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
3
The Role of Cholesterol in M2 Clustering and Viral Budding Explained.胆固醇在M2聚集和病毒出芽中的作用解析。
J Chem Theory Comput. 2025 Jan 28;21(2):912-932. doi: 10.1021/acs.jctc.4c01026. Epub 2024 Nov 4.
7
SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers.SARS-CoV-2 包膜蛋白在脂双层中形成聚集的五聚体。
Biochemistry. 2022 Nov 1;61(21):2280-2294. doi: 10.1021/acs.biochem.2c00464. Epub 2022 Oct 11.
8
H,C-Cholesterol for Dynamics and Structural Studies of Biological Membranes.用于生物膜动力学和结构研究的H、C-胆固醇
ACS Omega. 2022 May 10;7(20):17151-17160. doi: 10.1021/acsomega.2c00796. eCollection 2022 May 24.
10
Lipid-Protein Interactions in Plasma Membrane Organization and Function.质膜组织与功能中的脂-蛋白相互作用
Annu Rev Biophys. 2022 May 9;51:135-156. doi: 10.1146/annurev-biophys-090721-072718. Epub 2022 Jan 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验