Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
Macromol Rapid Commun. 2019 Jan;40(2):e1800325. doi: 10.1002/marc.201800325. Epub 2018 Jul 4.
Polymerization-induced self-assembly (PISA) has been established as an efficient, robust, and versatile approach to synthesize various block copolymer nano-objects with controlled morphologies, tunable dimensions, and diverse functions. The relatively high concentration and potential scalability makes it a promising technique for industrial production and practical applications of functional polymeric nanoparticles. This feature article outlines recent advances in PISA via reversible addition-fragmentation chain transfer dispersion polymerization. Considerable efforts to understand morphological control, broaden the monomer library, enhance morphological stability, and incorporate multiple driving forces in PISA syntheses are summarized herein. Finally, perspectives on the future of PISA research are discussed.
聚合诱导自组装(PISA)已被确立为一种高效、稳健、通用的方法,可用于合成具有可控形态、可调尺寸和多种功能的各种嵌段共聚物纳米物体。相对较高的浓度和潜在的可扩展性使其成为功能聚合物纳米粒子工业生产和实际应用的有前途的技术。本文概述了通过可逆加成-断裂链转移分散聚合进行 PISA 的最新进展。本文总结了在 PISA 合成中为了理解形态控制、拓宽单体库、增强形态稳定性以及结合多种驱动力而做出的相当大的努力。最后,讨论了 PISA 研究的未来展望。