Chohan Priyanka, György Csilla, Mykhaylyk Oleksandr O, Prentice Giles M, Filip Sorin V, Payne Marc J, Manna Gouranga, Armes Steven P
Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
Applied Sciences, BP Technology Centre, Whitchurch Hill, Reading RG8 7QR, U.K.
Macromolecules. 2024 Dec 4;57(24):11738-11752. doi: 10.1021/acs.macromol.4c02016. eCollection 2024 Dec 24.
We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization. First, GPC analysis requires chemical derivatization of the pendent hydroxyl groups in the PHEMA block using excess acetyl chloride to ensure that both blocks are fully soluble in chloroform. Second, DLS, TEM and H NMR spectroscopy studies of the periodically sampled polymerizing mixture indicate the transient formation of anomalously large, colloidally unstable aggregates at around 50% conversion, which approximately corresponds to the maximum rate of polymerization. Remarkably, such aggregates immediately break up to form well-defined nanoparticles, which remain colloidally stable at the end of the HEMA polymerization. Moreover, depending on the target degree of polymerization (DP) for the PHEMA block, TEM studies typically indicate bimodal particle size distributions for PLMA-PHEMA nanoparticles prepared using a one-shot batch protocol. This is attributed to a side-reaction between HEMA monomer and the dithiobenzoate-based RAFT agent. Fortunately, this problem can be prevented by conducting such PISA syntheses under monomer-starved conditions by continuous addition of the HEMA monomer using a syringe pump. Alternatively, unimodal spheres can also be produced via adding HEMA in multiple batches. This PISA formulation has been optimized to produce monomodal particle size distributions while targeting a PHEMA DP of up to 1000 at the maximum possible copolymer concentration. Finally, time-resolved small-angle X-ray scattering (SAXS) studies indicate the rapid formation of well-defined near-monodisperse spheres when targeting PLMA-PHEMA nanoparticles.
我们报道了在90℃下,使用聚(甲基丙烯酸月桂酯)(PLMA)前体在正十二烷中进行甲基丙烯酸2-羟乙酯(HEMA)的可逆加成-断裂链转移(RAFT)分散聚合。该配方是聚合诱导自组装(PISA)的一个例子,它导致在10-20% w/w固含量下形成球形PLMA-PHEMA纳米颗粒的胶体分散体。先前已经报道了在非极性介质中涉及极性单体的PISA合成,但这个特定的体系在合成和表征方面都带来了一些意想不到且有趣的挑战。首先,凝胶渗透色谱(GPC)分析需要使用过量的乙酰氯对PHEMA嵌段中的侧链羟基进行化学衍生化,以确保两个嵌段都能完全溶解于氯仿中。其次,对定期取样的聚合混合物进行动态光散射(DLS)、透射电子显微镜(TEM)和核磁共振氢谱(¹H NMR)光谱研究表明,在转化率约为50%时会瞬时形成异常大的、胶体不稳定的聚集体,这大致对应于聚合的最大速率。值得注意的是,这些聚集体会立即分解形成定义明确的纳米颗粒,这些纳米颗粒在HEMA聚合结束时保持胶体稳定。此外,根据PHEMA嵌段的目标聚合度(DP),TEM研究通常表明,使用一次性分批方案制备的PLMA-PHEMA纳米颗粒具有双峰粒径分布。这归因于HEMA单体与基于二硫代苯甲酸酯的RAFT试剂之间的副反应。幸运的是,通过使用注射泵连续添加HEMA单体,在单体饥饿条件下进行这种PISA合成可以避免这个问题。或者,也可以通过分批添加HEMA来制备单峰球体。这种PISA配方已经经过优化,以在最大可能的共聚物浓度下,目标PHEMA DP高达1000时产生单峰粒径分布。最后,时间分辨小角X射线散射(SAXS)研究表明,当以PLMA-PHEMA纳米颗粒为目标时,会快速形成定义明确的近单分散球体。