Suppr超能文献

唾液腺癌:基于表观扩散系数直方图特征预测癌症死亡风险。

Salivary gland carcinoma: Prediction of cancer death risk based on apparent diffusion coefficient histogram profiles.

机构信息

Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.

出版信息

PLoS One. 2018 Jul 5;13(7):e0200291. doi: 10.1371/journal.pone.0200291. eCollection 2018.

Abstract

We evaluated apparent diffusion coefficient (ADC) histogram parameters for predicting the outcomes of patients with salivary gland carcinoma. Diffusion-weighted MR imaging was performed in 20 patients with salivary gland carcinoma, and ADCs were determined using b-values of 500 and 1000 s/mm2. ADC histogram parameters (mean, median, percentage tumor area with distinctive ADC values [pADC], skewness, and kurtosis) were analyzed. The patients were followed for 5-136 months after primary surgery. The ADC histogram parameters and T (pT), N(pN), and M categories of the primary tumors were assessed for the prognostic importance using Cox proportional hazards models, logistic regression analysis, and receiver operating characteristic (ROC) analysis. Cohen's d was determined for evaluating the importance of differences in the parameters between two patient groups with different outcomes. Six patients died of cancer (DOC) within 3 years after the primary surgery. Cox proportional hazards models indicated that ADC mean (95% CI = 0.494-0.977, p = 0.034), ADC median (95% CI = 0.511-0.997, p = 0.048), pADC with extremely low (<0.6 mm2/s) ADC (95% CI = 1.013-1.082, p = 0.007), kurtosis (95% CI = 1.166-7.420, p = 0.023), and pN classification (95% CI = 1.196-4.836, p = 0.012) were important factors of cancer death risk. ROC analyses indicated that the pADC <0.6 ×10(-3) mm2/s was the best prognostic predictor (p <0.001; AUC = 0.929) among the ADC and TNM classification parameters that were significant in a univariate logistic regression analysis. Cohen's d values between the DOC and survived patients for the ADC mean, ADC median, pADC with extremely low ADC, and kurtosis were 1.06, 1.04, 2.12, and 1.13, respectively. These results suggest that ADC histogram analysis may be helpful for predicting the outcomes of patients with salivary gland carcinoma.

摘要

我们评估了表观扩散系数(ADC)直方图参数,以预测唾液腺癌患者的预后。对 20 例唾液腺癌患者进行了弥散加权 MR 成像,使用 b 值为 500 和 1000 s/mm2 确定 ADC。分析 ADC 直方图参数(平均值、中位数、具有独特 ADC 值的肿瘤面积百分比 [pADC]、偏度和峰度)。患者在原发手术后 5-136 个月进行随访。使用 Cox 比例风险模型、逻辑回归分析和接收者操作特征(ROC)分析评估 ADC 直方图参数以及原发肿瘤的 T(pT)、N(pN)和 M 分期对预后的重要性。使用 Cohen's d 评估两组具有不同预后的患者之间参数差异的重要性。6 例患者在原发手术后 3 年内死于癌症(DOC)。Cox 比例风险模型表明 ADC 平均值(95%CI=0.494-0.977,p=0.034)、ADC 中位数(95%CI=0.511-0.997,p=0.048)、具有极低 ADC(<0.6mm2/s)的 pADC(95%CI=1.013-1.082,p=0.007)、峰度(95%CI=1.166-7.420,p=0.023)和 pN 分类(95%CI=1.196-4.836,p=0.012)是癌症死亡风险的重要因素。ROC 分析表明,在单变量逻辑回归分析中具有统计学意义的 ADC 和 TNM 分类参数中,pADC<0.6×10(-3)mm2/s 是最佳的预后预测指标(p<0.001;AUC=0.929)。DOC 和存活患者之间 ADC 平均值、ADC 中位数、具有极低 ADC 的 pADC 和峰度的 Cohen's d 值分别为 1.06、1.04、2.12 和 1.13。这些结果表明,ADC 直方图分析可能有助于预测唾液腺癌患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/6033457/298f895032e4/pone.0200291.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验