Suppr超能文献

通过设计制备刚硬且坚韧的毛状纳米颗粒组装体的材料

Materials by Design for Stiff and Tough Hairy Nanoparticle Assemblies.

作者信息

Hansoge Nitin K, Huang Tianyu, Sinko Robert, Xia Wenjie, Chen Wei, Keten Sinan

机构信息

Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States.

Department of Mechanical Engineering , Northern Illinois University , 590 Garden Road , DeKalb , Illinois 60115 , United States.

出版信息

ACS Nano. 2018 Aug 28;12(8):7946-7958. doi: 10.1021/acsnano.8b02454. Epub 2018 Aug 7.

Abstract

Matrix-free polymer-grafted nanocrystals, called assembled hairy nanoparticles (aHNPs), can significantly enhance the thermomechanical performance of nanocomposites by overcoming nanoparticle dispersion challenges and achieving stronger interfacial interactions through grafted polymer chains. However, effective strategies to improve both the mechanical stiffness and toughness of aHNPs are lacking given the general conflicting nature of these two properties and the large number of molecular parameters involved in the design of aHNPs. Here, we propose a computational framework that combines multiresponse Gaussian process metamodeling and coarse-grained molecular dynamics simulations to establish design strategies for achieving optimal mechanical properties of aHNPs within a parametric space. Taking poly(methyl methacrylate) grafted to high-aspect-ratio cellulose nanocrystals as a model nanocomposite, our multiobjective design optimization framework reveals that the polymer chain length and grafting density are the main influencing factors governing the mechanical properties of aHNPs, in comparison to the nanoparticle size and the polymer-nanoparticle interfacial interactions. In particular, the Pareto frontier, that marks the upper bound of mechanical properties within the design parameter space, can be achieved when the weight percentage of nanoparticles is above around 60% and the grafted chains exceed the critical length scale governing transition into the semidilute brush regime. We show that theoretical scaling relationships derived from the Daoud-Cotton model capture the dependence of the critical length scale on graft density and nanoparticle size. Our established modeling framework provides valuable insights into the mechanical behavior of these hairy nanoparticle assemblies at the molecular level and allows us to establish guidelines for nanocomposite design.

摘要

无基质聚合物接枝纳米晶体,即组装毛状纳米颗粒(aHNPs),可以通过克服纳米颗粒分散挑战并通过接枝聚合物链实现更强的界面相互作用,从而显著提高纳米复合材料的热机械性能。然而,由于这两种性能通常相互矛盾,且aHNPs设计中涉及大量分子参数,目前缺乏有效提高aHNPs机械刚度和韧性的策略。在此,我们提出了一个计算框架,该框架结合了多响应高斯过程元建模和粗粒度分子动力学模拟,以在参数空间内建立实现aHNPs最佳机械性能的设计策略。以接枝到高长径比纤维素纳米晶体上的聚甲基丙烯酸甲酯为模型纳米复合材料,我们的多目标设计优化框架表明,与纳米颗粒尺寸和聚合物 - 纳米颗粒界面相互作用相比,聚合物链长度和接枝密度是控制aHNPs机械性能的主要影响因素。特别是,当纳米颗粒的重量百分比高于约60%且接枝链超过控制向半稀刷状态转变的临界长度尺度时,可以实现标记设计参数空间内机械性能上限的帕累托前沿。我们表明,从Daoud - Cotton模型导出的理论标度关系捕捉了临界长度尺度对接枝密度和纳米颗粒尺寸的依赖性。我们建立的建模框架为这些毛状纳米颗粒组装体在分子水平上的力学行为提供了有价值的见解,并使我们能够建立纳米复合材料设计的指导方针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验