Department of Chemistry, The University of Tokyo, Tokyo, Japan.
Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
Nat Protoc. 2018 Jul;13(7):1603-1631. doi: 10.1038/s41596-018-0008-7.
The ability to rapidly assay morphological and intracellular molecular variations within large heterogeneous populations of cells is essential for understanding and exploiting cellular heterogeneity. Optofluidic time-stretch microscopy is a powerful method for meeting this goal, as it enables high-throughput imaging flow cytometry for large-scale single-cell analysis of various cell types ranging from human blood to algae, enabling a unique class of biological, medical, pharmaceutical, and green energy applications. Here, we describe how to perform high-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Specifically, this protocol provides step-by-step instructions on how to build an optical time-stretch microscope and a cell-focusing microfluidic device for optofluidic time-stretch microscopy, use it for high-throughput single-cell image acquisition with sub-micrometer resolution at >10,000 cells per s, conduct image construction and enhancement, perform image analysis for large-scale single-cell analysis, and use computational tools such as compressive sensing and machine learning for handling the cellular 'big data'. Assuming all components are readily available, a research team of three to four members with an intermediate level of experience with optics, electronics, microfluidics, digital signal processing, and sample preparation can complete this protocol in a time frame of 1 month.
快速分析大型异质细胞群体中形态和细胞内分子变化的能力对于理解和利用细胞异质性至关重要。光流变形显微镜是满足这一目标的强大方法,因为它能够实现高通量成像流式细胞术,对从人类血液到藻类等各种细胞类型进行大规模单细胞分析,从而实现独特的一类生物、医学、药物和绿色能源应用。在这里,我们描述如何通过光流变形显微镜进行高通量成像流式细胞术。具体来说,本协议提供了如何构建光时光显微镜和细胞聚焦微流控器件的分步说明用于光流变形显微镜,以亚微米分辨率 (>10,000 个细胞/s) 进行高通量单细胞图像采集,进行图像构建和增强,进行大规模单细胞分析的图像分析,并使用计算工具(如压缩感知和机器学习)来处理细胞“大数据”。假设所有组件都易于获得,具有光学、电子、微流控、数字信号处理和样品制备方面中级经验的三到四名研究人员可以在 1 个月的时间内完成本协议。