Suppr超能文献

以阿尔茨海默病为例的用于生物标志物发现的人工神经网络集成管道

An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer's Disease as a Case Study.

作者信息

Zafeiris Dimitrios, Rutella Sergio, Ball Graham Roy

机构信息

John van Geest Cancer Research Centre, College of Science and Technology, Nottingham Trent University, United Kingdom.

出版信息

Comput Struct Biotechnol J. 2018 Feb 21;16:77-87. doi: 10.1016/j.csbj.2018.02.001. eCollection 2018.

Abstract

The field of machine learning has allowed researchers to generate and analyse vast amounts of data using a wide variety of methodologies. Artificial Neural Networks (ANN) are some of the most commonly used statistical models and have been successful in biomarker discovery studies in multiple disease types. This review seeks to explore and evaluate an integrated ANN pipeline for biomarker discovery and validation in Alzheimer's disease, the most common form of dementia worldwide with no proven cause and no available cure. The proposed pipeline consists of analysing public data with a categorical and continuous stepwise algorithm and further examination through network inference to predict gene interactions. This methodology can reliably generate novel markers and further examine known ones and can be used to guide future research in Alzheimer's disease.

摘要

机器学习领域使研究人员能够使用各种各样的方法生成和分析大量数据。人工神经网络(ANN)是一些最常用的统计模型,并且在多种疾病类型的生物标志物发现研究中取得了成功。本综述旨在探索和评估一种用于阿尔茨海默病生物标志物发现和验证的综合人工神经网络流程,阿尔茨海默病是全球最常见的痴呆形式,病因不明且无法治愈。所提出的流程包括使用分类和连续逐步算法分析公共数据,并通过网络推理进行进一步检查以预测基因相互作用。这种方法能够可靠地生成新的标志物,并进一步检查已知的标志物,可用于指导未来阿尔茨海默病的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验