Suppr超能文献

基于深度学习的与阿尔茨海默病神经病理学和临床严重程度相关的脑转录组特征。

Deep learning-based brain transcriptomic signatures associated with the neuropathological and clinical severity of Alzheimer's disease.

作者信息

Wang Qi, Chen Kewei, Su Yi, Reiman Eric M, Dudley Joel T, Readhead Benjamin

机构信息

ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA.

Banner Alzheimer's Institute, Phoenix, AZ 85006, USA.

出版信息

Brain Commun. 2021 Dec 14;4(1):fcab293. doi: 10.1093/braincomms/fcab293. eCollection 2022 Feb.

Abstract

Brain tissue gene expression from donors with and without Alzheimer's disease has been used to help inform the molecular changes associated with the development and potential treatment of this disorder. Here, we use a deep learning method to analyse RNA-seq data from 1114 brain donors from the Accelerating Medicines Project for Alzheimer's Disease consortium to characterize post-mortem brain transcriptome signatures associated with amyloid-β plaque, tau neurofibrillary tangles and clinical severity in multiple Alzheimer's disease dementia populations. Starting from the cross-sectional data in the Religious Orders Study and Memory and Aging Project cohort ( = 634), a deep learning framework was built to obtain a trajectory that mirrors Alzheimer's disease progression. A severity index was defined to quantitatively measure the progression based on the trajectory. Network analysis was then carried out to identify key gene (index gene) modules present in the model underlying the progression. Within this data set, severity indexes were found to be very closely correlated with all Alzheimer's disease neuropathology biomarkers ( ∼ 0.5, < 1e-11) and global cognitive function ( = -0.68, < 2.2e-16). We then applied the model to additional transcriptomic data sets from different brain regions (MAYO, = 266; Mount Sinai Brain Bank, = 214), and observed that the model remained significantly predictive ( < 1e-3) of neuropathology and clinical severity. The index genes that significantly contributed to the model were integrated with Alzheimer's disease co-expression regulatory networks, resolving four discrete gene modules that are implicated in vascular and metabolic dysfunction in different cell types, respectively. Our work demonstrates the generalizability of this signature to frontal and temporal cortex measurements and additional brain donors with Alzheimer's disease, other age-related neurological disorders and controls, and revealed that the transcriptomic network modules contribute to neuropathological and clinical disease severity. This study illustrates the promise of using deep learning methods to analyse heterogeneous omics data and discover potentially targetable molecular networks that can inform the development, treatment and prevention of neurodegenerative diseases like Alzheimer's disease.

摘要

来自患有和未患阿尔茨海默病的捐赠者的脑组织基因表达,已被用于帮助了解与该疾病的发展和潜在治疗相关的分子变化。在此,我们使用一种深度学习方法,来分析来自阿尔茨海默病加速药物研发项目联盟的1114名脑捐赠者的RNA测序数据,以表征与多个阿尔茨海默病痴呆人群中的淀粉样β斑块、tau神经原纤维缠结和临床严重程度相关的死后脑转录组特征。从宗教团体研究与记忆和衰老项目队列(n = 634)中的横断面数据开始,构建了一个深度学习框架,以获得一条反映阿尔茨海默病进展的轨迹。定义了一个严重程度指数,基于该轨迹定量测量进展情况。然后进行网络分析,以识别进展背后模型中存在的关键基因(索引基因)模块。在这个数据集中,发现严重程度指数与所有阿尔茨海默病神经病理学生物标志物密切相关(r ∼ 0.5,p < 1e - 11)以及与整体认知功能密切相关(r = -0.68,p < 2.2e - 16)。然后我们将该模型应用于来自不同脑区的其他转录组数据集(梅奥诊所,n = 266;西奈山脑库,n = 214),并观察到该模型对神经病理学和临床严重程度仍具有显著的预测性(p < 1e - 3)。对模型有显著贡献的索引基因与阿尔茨海默病共表达调控网络整合,解析出四个离散的基因模块,它们分别与不同细胞类型中的血管和代谢功能障碍有关。我们的工作证明了这种特征在额叶和颞叶皮质测量以及其他患有阿尔茨海默病、其他与年龄相关的神经系统疾病的脑捐赠者和对照中的通用性,并揭示转录组网络模块对神经病理学和临床疾病严重程度有贡献。这项研究说明了使用深度学习方法分析异质组学数据并发现潜在可靶向分子网络的前景,这些网络可为阿尔茨海默病等神经退行性疾病的发展、治疗和预防提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ef/8728025/6c29e86638fd/fcab293ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验