Sharma Amitabh, Halu Arda, Decano Julius L, Padi Megha, Liu Yang-Yu, Prasad Rashmi B, Fadista Joao, Santolini Marc, Menche Jörg, Weiss Scott T, Vidal Marc, Silverman Edwin K, Aikawa Masanori, Barabási Albert-László, Groop Leif, Loscalzo Joseph
1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA.
2Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 USA.
NPJ Syst Biol Appl. 2018 Jul 3;4:25. doi: 10.1038/s41540-018-0057-0. eCollection 2018.
Probing the dynamic control features of biological networks represents a new frontier in capturing the dysregulated pathways in complex diseases. Here, using patient samples obtained from a pancreatic islet transplantation program, we constructed a tissue-specific gene regulatory network and used the control centrality (Cc) concept to identify the high control centrality (HiCc) pathways, which might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found that HiCc pathway genes were significantly enriched with modest GWAS -values in the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study. We identified variants regulating gene expression (expression quantitative loci, eQTL) of HiCc pathway genes in islet samples. These eQTL genes showed higher levels of differential expression compared to non-eQTL genes in low, medium, and high glucose concentrations in rat islets. Among genes with highly significant eQTL evidence, NFATC4 belonged to four HiCc pathways. We asked if the expressions of T2D-associated candidate genes from GWAS and literature are regulated by Nfatc4 in rat islets. Extensive in vitro silencing of Nfatc4 in rat islet cells displayed reduced expression of 16, and increased expression of four putative downstream T2D genes. Overall, our approach uncovers the mechanistic connection of NFATC4 with downstream targets including a previously unknown one, TCF7L2, and establishes the HiCc pathways' relationship to T2D.
探究生物网络的动态控制特征是捕捉复杂疾病中失调通路的一个新领域。在此,我们利用从胰岛移植项目中获取的患者样本构建了一个组织特异性基因调控网络,并使用控制中心性(Cc)概念来识别高控制中心性(HiCc)通路,这些通路可能是2型糖尿病(T2D)的关键病理生物学通路。我们发现,在糖尿病遗传复制与荟萃分析(DIAGRAM)研究中,HiCc通路基因在适度全基因组关联研究(GWAS)值中显著富集。我们在胰岛样本中鉴定了调控HiCc通路基因表达的变异(表达数量性状位点,eQTL)。在大鼠胰岛的低、中、高葡萄糖浓度下,与非eQTL基因相比,这些eQTL基因显示出更高水平的差异表达。在具有高度显著eQTL证据的基因中,NFATC4属于四个HiCc通路。我们探究了来自GWAS和文献的T2D相关候选基因的表达是否受大鼠胰岛中Nfatc4的调控。在大鼠胰岛细胞中广泛沉默Nfatc4显示,16个基因的表达降低,4个假定的下游T2D基因的表达增加。总体而言,我们的方法揭示了NFATC4与包括先前未知的TCF7L2在内的下游靶点的机制联系,并建立了HiCc通路与T2D的关系。