Department of Radiology, Columbia University Medical Center, New York, NY, USA.
Department of Radiology, UC San Francisco Medical Center, San Francisco, CA, USA.
Ann Surg Oncol. 2018 Oct;25(10):3037-3043. doi: 10.1245/s10434-018-6613-4. Epub 2018 Jul 5.
In the postneoadjuvant chemotherapy (NAC) setting, conventional radiographic complete response (rCR) is a poor predictor of pathologic complete response (pCR) of the axilla. We developed a convolutional neural network (CNN) algorithm to better predict post-NAC axillary response using a breast MRI dataset.
An institutional review board-approved retrospective study from January 2009 to June 2016 identified 127 breast cancer patients who: (1) underwent breast MRI before the initiation of NAC; (2) successfully completed Adriamycin/Taxane-based NAC; and (3) underwent surgery, including sentinel lymph node evaluation/axillary lymph node dissection with final surgical pathology data. Patients were classified into pathologic complete response (pCR) of the axilla group and non-pCR group based on surgical pathology. Breast MRI performed before NAC was used. Tumor was identified on first T1 postcontrast images underwent 3D segmentation. A total of 2811 volumetric slices of 127 tumors were evaluated. CNN consisted of 10 convolutional layers, 4 max-pooling layers. Dropout, augmentation and L2 regularization were implemented to prevent overfitting of data.
On final surgical pathology, 38.6% (49/127) of the patients achieved pCR of the axilla (group 1), and 61.4% (78/127) of the patients did not with residual metastasis detected (group 2). For predicting axillary pCR, our CNN algorithm achieved an overall accuracy of 83% (95% confidence interval [CI] ± 5) with sensitivity of 93% (95% CI ± 6) and specificity of 77% (95% CI ± 4). Area under the ROC curve (0.93, 95% CI ± 0.04).
It is feasible to use CNN architecture to predict post NAC axillary pCR. Larger data set will likely improve our prediction model.
在新辅助化疗(NAC)后,常规放射学完全缓解(rCR)是腋窝病理完全缓解(pCR)的不良预测指标。我们开发了一种卷积神经网络(CNN)算法,使用乳腺 MRI 数据集更好地预测 NAC 后腋窝的反应。
一项机构审查委员会批准的回顾性研究,纳入了 2009 年 1 月至 2016 年 6 月期间的 127 名乳腺癌患者,这些患者:(1)在 NAC 开始前接受乳腺 MRI 检查;(2)成功完成蒽环类药物/紫杉烷类药物为基础的 NAC;(3)接受手术,包括前哨淋巴结评估/腋窝淋巴结清扫术,以及最终的手术病理数据。根据手术病理结果,将患者分为腋窝 pCR 组和非 pCR 组。使用 NAC 前的乳腺 MRI 检查进行肿瘤识别。在首次 T1 增强后图像上进行 3D 分割。共评估了 127 个肿瘤的 2811 个容积切片。CNN 由 10 个卷积层和 4 个最大池化层组成。实施了辍学、扩充和 L2 正则化,以防止数据过度拟合。
在最终的手术病理中,38.6%(49/127)的患者达到了腋窝 pCR(组 1),61.4%(78/127)的患者有残留转移(组 2)。对于预测腋窝 pCR,我们的 CNN 算法的总体准确率为 83%(95%置信区间±5),敏感性为 93%(95%置信区间±6),特异性为 77%(95%置信区间±4)。ROC 曲线下面积(0.93,95%置信区间±0.04)。
使用 CNN 架构预测 NAC 后腋窝 pCR 是可行的。更大的数据集可能会提高我们的预测模型。