Suppr超能文献

利用新型卷积神经网络算法预测新辅助腋窝治疗后的反应。

Predicting Post Neoadjuvant Axillary Response Using a Novel Convolutional Neural Network Algorithm.

机构信息

Department of Radiology, Columbia University Medical Center, New York, NY, USA.

Department of Radiology, UC San Francisco Medical Center, San Francisco, CA, USA.

出版信息

Ann Surg Oncol. 2018 Oct;25(10):3037-3043. doi: 10.1245/s10434-018-6613-4. Epub 2018 Jul 5.

Abstract

OBJECTIVES

In the postneoadjuvant chemotherapy (NAC) setting, conventional radiographic complete response (rCR) is a poor predictor of pathologic complete response (pCR) of the axilla. We developed a convolutional neural network (CNN) algorithm to better predict post-NAC axillary response using a breast MRI dataset.

METHODS

An institutional review board-approved retrospective study from January 2009 to June 2016 identified 127 breast cancer patients who: (1) underwent breast MRI before the initiation of NAC; (2) successfully completed Adriamycin/Taxane-based NAC; and (3) underwent surgery, including sentinel lymph node evaluation/axillary lymph node dissection with final surgical pathology data. Patients were classified into pathologic complete response (pCR) of the axilla group and non-pCR group based on surgical pathology. Breast MRI performed before NAC was used. Tumor was identified on first T1 postcontrast images underwent 3D segmentation. A total of 2811 volumetric slices of 127 tumors were evaluated. CNN consisted of 10 convolutional layers, 4 max-pooling layers. Dropout, augmentation and L2 regularization were implemented to prevent overfitting of data.

RESULTS

On final surgical pathology, 38.6% (49/127) of the patients achieved pCR of the axilla (group 1), and 61.4% (78/127) of the patients did not with residual metastasis detected (group 2). For predicting axillary pCR, our CNN algorithm achieved an overall accuracy of 83% (95% confidence interval [CI] ± 5) with sensitivity of 93% (95% CI ± 6) and specificity of 77% (95% CI ± 4). Area under the ROC curve (0.93, 95% CI ± 0.04).

CONCLUSIONS

It is feasible to use CNN architecture to predict post NAC axillary pCR. Larger data set will likely improve our prediction model.

摘要

目的

在新辅助化疗(NAC)后,常规放射学完全缓解(rCR)是腋窝病理完全缓解(pCR)的不良预测指标。我们开发了一种卷积神经网络(CNN)算法,使用乳腺 MRI 数据集更好地预测 NAC 后腋窝的反应。

方法

一项机构审查委员会批准的回顾性研究,纳入了 2009 年 1 月至 2016 年 6 月期间的 127 名乳腺癌患者,这些患者:(1)在 NAC 开始前接受乳腺 MRI 检查;(2)成功完成蒽环类药物/紫杉烷类药物为基础的 NAC;(3)接受手术,包括前哨淋巴结评估/腋窝淋巴结清扫术,以及最终的手术病理数据。根据手术病理结果,将患者分为腋窝 pCR 组和非 pCR 组。使用 NAC 前的乳腺 MRI 检查进行肿瘤识别。在首次 T1 增强后图像上进行 3D 分割。共评估了 127 个肿瘤的 2811 个容积切片。CNN 由 10 个卷积层和 4 个最大池化层组成。实施了辍学、扩充和 L2 正则化,以防止数据过度拟合。

结果

在最终的手术病理中,38.6%(49/127)的患者达到了腋窝 pCR(组 1),61.4%(78/127)的患者有残留转移(组 2)。对于预测腋窝 pCR,我们的 CNN 算法的总体准确率为 83%(95%置信区间±5),敏感性为 93%(95%置信区间±6),特异性为 77%(95%置信区间±4)。ROC 曲线下面积(0.93,95%置信区间±0.04)。

结论

使用 CNN 架构预测 NAC 后腋窝 pCR 是可行的。更大的数据集可能会提高我们的预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验