Suppr超能文献

使用MRI、CT或超声预测新辅助化疗后腋窝淋巴结阳性的机器学习方法:一项系统综述

Machine learning approaches in the prediction of positive axillary lymph nodes post neoadjuvant chemotherapy using MRI, CT, or ultrasound: A systematic review.

作者信息

Yaghoobpoor Shirin, Fathi Mobina, Ghorani Hamed, Valizadeh Parya, Jannatdoust Payam, Tavasol Arian, Zarei Melika, Arian Arvin

机构信息

Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.

出版信息

Eur J Radiol Open. 2024 Apr 24;12:100561. doi: 10.1016/j.ejro.2024.100561. eCollection 2024 Jun.

Abstract

BACKGROUND AND OBJECTIVE

Neoadjuvant chemotherapy is a standard treatment approach for locally advanced breast cancer. Conventional imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound, have been used for axillary lymph node evaluation which is crucial for treatment planning and prognostication. This systematic review aims to comprehensively examine the current research on applying machine learning algorithms for predicting positive axillary lymph nodes following neoadjuvant chemotherapy utilizing imaging modalities, including MRI, CT, and ultrasound.

METHODS

A systematic search was conducted across databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published up to December 2023. Articles employing machine learning algorithms to predict positive axillary lymph nodes using MRI, CT, or ultrasound data after neoadjuvant chemotherapy were included. The review follows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, encompassing data extraction and quality assessment.

RESULTS

Seven studies were included, comprising 1502 patients. Four studies used MRI, two used CT, and one applied ultrasound. Two studies developed deep-learning models, while five used classic machine-learning models mainly based on multiple regression. Across the studies, the models showed high predictive accuracy, with the best-performing models combining radiomics and clinical data.

CONCLUSION

This systematic review demonstrated the potential of utilizing advanced data analysis techniques, such as deep learning radiomics, in improving the prediction of positive axillary lymph nodes in breast cancer patients following neoadjuvant chemotherapy.

摘要

背景与目的

新辅助化疗是局部晚期乳腺癌的标准治疗方法。传统成像方式,如磁共振成像(MRI)、计算机断层扫描(CT)和超声,已用于腋窝淋巴结评估,这对治疗规划和预后至关重要。本系统评价旨在全面审视目前利用MRI、CT和超声等成像方式应用机器学习算法预测新辅助化疗后腋窝淋巴结阳性的研究。

方法

在包括PubMed、Scopus和科学网在内的数据库中进行系统检索,以识别截至2023年12月发表的相关研究。纳入采用机器学习算法利用新辅助化疗后的MRI、CT或超声数据预测腋窝淋巴结阳性的文章。本评价遵循系统评价和Meta分析的首选报告项目(PRISMA)指南,包括数据提取和质量评估。

结果

纳入7项研究,共1502例患者。4项研究使用MRI,2项使用CT,1项应用超声。2项研究开发了深度学习模型,5项使用主要基于多元回归的经典机器学习模型。在各项研究中,模型显示出较高的预测准确性,表现最佳的模型结合了放射组学和临床数据。

结论

本系统评价证明了利用深度学习放射组学等先进数据分析技术在改善新辅助化疗后乳腺癌患者腋窝淋巴结阳性预测方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439c/11063585/771fb899d1a2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验