Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany.
Phys Rev Lett. 2018 Jun 22;120(25):257401. doi: 10.1103/PhysRevLett.120.257401.
We develop a general microscopic theory describing the phonon decoherence of quantum dots and indistinguishability of the emitted photons in photonic structures. The coherence is found to depend fundamentally on the dimensionality of the structure resulting in vastly different performance for quantum dots embedded in a nanocavity (0D), waveguide (1D), slab (2D), or bulk medium (3D). In bulk, we find a striking temperature dependence of the dephasing rate scaling as T^{11} implying that phonons are effectively "frozen out" for T≲4 K. The phonon density of states is strongly modified in 1D and 2D structures leading to a linear temperature scaling for the dephasing strength. The resulting impact on the photon indistinguishability can be important even at sub-Kelvin temperatures. Our findings provide a comprehensive understanding of the fundamental limits to photon indistinguishability in photonic structures.
我们提出了一个普遍的微观理论,用以描述量子点中的声子退相干和光子在光子结构中的不可分辨性。我们发现,这种相干性从根本上取决于结构的维度,这导致了嵌入在纳米腔(0D)、波导(1D)、平板(2D)或体介质(3D)中的量子点具有截然不同的性能。在体材料中,我们发现退相率的显著温度依赖性,其标度为 T^{11},这意味着在 T≲4 K 时,声子实际上被“冻结”。在 1D 和 2D 结构中,声子态密度被强烈修正,导致退相强度呈线性温度标度。由此对光子不可分辨性的影响即使在亚开尔文温度下也可能很重要。我们的发现为理解光子在光子结构中的不可分辨性的基本限制提供了全面的认识。