Center for Plant Systems Biology, VIB, Ghent, Belgium.
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
Plant J. 2018 Oct;96(1):223-232. doi: 10.1111/tpj.14015. Epub 2018 Jul 29.
High-throughput RNA sequencing has proven invaluable not only to explore gene expression but also for both gene prediction and genome annotation. However, RNA sequencing, carried out on tens or even hundreds of samples, requires easy and cost-effective sample preparation methods using minute RNA amounts. Here, we present TranSeq, a high-throughput 3'-end sequencing procedure that requires 10- to 20-fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces costs and allows a greater increase in size of sample sets analyzed in a single experiment. Moreover, in comparison with other 3'-end sequencing methods reported to date, we demonstrate here the reliability and immediate applicability of TranSeq and show that it not only provides accurate transcriptome profiles but also produces precise expression measurements of specific gene family members possessing high sequence similarity. This is difficult to achieve in standard RNA-seq methods, in which sequence reads cover the entire transcript. Furthermore, mapping TranSeq reads to the reference tomato genome facilitated the annotation of new transcripts improving >45% of the existing gene models. Hence, we anticipate that using TranSeq will boost large-scale transcriptome assays and increase the spatial and temporal resolution of gene expression data, in both model and non-model plant species. Moreover, as already performed for tomato (ITAG3.0; www.solgenomics.net), we strongly advocate its integration into current and future genome annotations.
高通量 RNA 测序不仅在探索基因表达方面非常有价值,而且在基因预测和基因组注释方面也非常有用。然而,进行数十个甚至数百个样本的 RNA 测序需要使用少量 RNA 进行简单且具有成本效益的样品制备方法。在这里,我们介绍了 TranSeq,这是一种高通量 3'末端测序程序,所需的测序读长比当前的转录组学方法少 10 到 20 倍。TranSeq 显著降低了成本,并允许在单个实验中分析的样本集的大小有更大的增加。此外,与迄今为止报道的其他 3'末端测序方法相比,我们在这里证明了 TranSeq 的可靠性和直接适用性,表明它不仅提供了准确的转录组谱,而且还对具有高度序列相似性的特定基因家族成员进行了精确的表达测量。这在标准 RNA-seq 方法中很难实现,因为序列读长覆盖整个转录本。此外,将 TranSeq 读长映射到参考番茄基因组有助于注释新的转录本,从而提高了现有基因模型的 >45%。因此,我们预计使用 TranSeq 将促进大规模转录组分析,并提高基因表达数据的空间和时间分辨率,无论是在模式和非模式植物物种中。此外,正如已经在番茄(ITAG3.0;www.solgenomics.net)中进行的那样,我们强烈主张将其集成到当前和未来的基因组注释中。