Suppr超能文献

通过聚胺介导的纳米粒子组装设计类似于细胞微环境的微反应器,用于调节葡萄糖氧化酶动力学。

Designing Microreactors Resembling Cellular Microenvironment via Polyamine-Mediated Nanoparticle-Assembly for Tuning Glucose Oxidase Kinetics.

机构信息

Nanomaterials Laboratory , CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007 , India.

出版信息

Bioconjug Chem. 2018 Aug 15;29(8):2586-2593. doi: 10.1021/acs.bioconjchem.8b00303. Epub 2018 Jul 19.

Abstract

Spatial confinement of glucose oxidase (GOx) in the hollow interior of a bioinspired matrix via polyamine mediated silica nanoparticle assembly under environmentally benign conditions is demonstrated herein. In a similarity to the biosilicification processes in diatoms, we use poly(allylamine hydrochloride) (PAH) to direct the assembly of silica nanoparticles on CaCO spheres as the removable core. When this assembly process is performed on the CaCO spheres, which are preloaded with GOx in a postsynthesis method, microspheres encapsulating GOx are formed. Interestingly, the encapsulated GOx in these microreactors exhibits activity with a Michaelis-Menten constant ( K) that is 2- to 3-fold less compared with the free enzyme in the solution. While the microenvironment of the organic (PAH)-inorganic (silica) hybrid system can be advantageous for the substrate to interact with enzyme, the effective pH in the vicinity of the entrapped enzyme may also be accountable for the improved activity, resulting in the lower apparent K and enhanced specificity constant ( k/ K). A 2-fold higher thermal stability of the encapsulated GOx compared with free GOx in solution further demonstrates the efficacy of the integrated architecture. Additionally, the PAH by virtue of its buffering capability allows the microspheres in imparting pH stability to the encapsulated GOx. Therefore, the method is not only a greener process for performing enzyme immobilization but also anticipated to aid in designing microreactors for enhanced enzyme activity.

摘要

本文展示了在环境友好的条件下,通过多胺介导的硅纳米颗粒组装,将葡萄糖氧化酶(GOx)空间限制在仿生基质的中空内部。与硅藻生物硅化过程类似,我们使用聚(盐酸烯丙胺)(PAH)来指导硅纳米颗粒在 CaCO 球上的组装,作为可去除的核。当将这个组装过程应用于预先用 POST 法加载 GOx 的 CaCO 球时,形成了包裹 GOx 的微球。有趣的是,这些微反应器中包裹的 GOx 表现出活性,米氏常数( K)比溶液中的游离酶低 2 到 3 倍。虽然有机(PAH)-无机(硅)杂化系统的微环境有利于底物与酶相互作用,但包埋酶附近的有效 pH 值也可能是提高活性的原因,导致表观 K 和特异性常数( k/ K)的提高。与溶液中的游离 GOx 相比,包埋 GOx 的热稳定性提高了 2 倍,进一步证明了这种集成结构的有效性。此外,由于其缓冲能力,PAH 允许微球为包埋的 GOx 提供 pH 稳定性。因此,该方法不仅是一种更环保的酶固定化方法,而且有望有助于设计用于提高酶活性的微反应器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验