Clean Energy Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 136-791, South Korea.
Enzyme Microb Technol. 2011 Oct 10;49(5):441-5. doi: 10.1016/j.enzmictec.2011.07.005. Epub 2011 Jul 23.
We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm(-1) by adding 1mM glucose at an applied potential of -0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67mM (S/N=3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.
我们构建了一种融合蛋白(GOx-R5),由 R5(硅石丝蛋白的一个多肽成分)和葡萄糖氧化酶(GOx)组成,该融合蛋白在巴斯德毕赤酵母中表达。硅石丝蛋白负责硅藻的硅基细胞基质的形成,并且 R5 蛋白的合成变体可以在体外进行硅化[1]。巴斯德毕赤酵母分泌的 GOx 在 pH 5 的柠檬酸缓冲液中使用 0.1M 四甲氧基硅烷作为硅源进行自固定(生物硅化)。GOx-R5 的这种自捕获特性被用于将 GOx 固定在石墨棒电极上。设计了一个电电池作为生物传感器来监测葡萄糖浓度。该电池由一个 Ag/AgCl 参比电极、一个铂对电极和一个用聚(中性红)(PNR)/GOx/Nafion 修饰的工作电极组成。葡萄糖氧化酶通过融合蛋白固定在聚(中性红)上,并覆盖 Nafion 以防止扩散到溶液中。通过扫描电子显微镜(SEM)分析了所得复合 PNR/GOx/Nafion 材料的形态。通过在存在葡萄糖的情况下使用循环伏安法和安培法对电化学传感器进行了表征。扫描电子显微镜产生的图像支持了 PNR/GOx 复合物的形成,并且在施加的 -0.5 V 电势下添加 1mM 葡萄糖后电流增加到 1.58μA cm(-1)。通过 PNR 还原的过氧化氢来检测电流,过氧化氢是 GOx 氧化葡萄糖的产物。检测限为 0.67mM(S/N=3)。含有石墨棒/PNR/GOx/Nafion 的生物传感器在含有干扰分子的混合样品中检测到不同浓度的葡萄糖。在这项研究中,我们首次在真核细胞中表达了 R5 与葡萄糖氧化酶融合,并展示了自捕获 GOx 在葡萄糖生物传感器中的应用。