Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
Biotechnol Bioeng. 2018 Nov;115(11):2778-2792. doi: 10.1002/bit.26789. Epub 2018 Sep 25.
Bacillus subtilis has been commonly applied to industrial enzyme production due to its genetic tractability, "generally recognized as safe (GRAS)" status, and robust growth characteristics. In spite of its ideal attributes as a biomanufacturing platform, B. subtilis has seen limited use in the production of other value-added biochemicals. Here, we report the derivation of engineered strains of B. subtilis for l-valine overproduction using our recently developed CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated [protein] 9) toolkit. We first manipulate the native l-valine biosynthetic pathway by relieving transcriptional and allosteric regulation, resulting in a >14-fold increase in the l-valine titer, compared to the wild-type strain. We subsequently identify and eliminate factors limiting l-valine overproduction, specifically increasing pyruvate availability and blocking the competing l-leucine and l-isoleucine biosynthetic pathways. By inactivating (a) pdhA, encoding the E1α subunit of the pyruvate dehydrogenase complex, to increase the intracellular pyruvate pool, and (b) leuA and ilvA, respectively encoding 2-isopropylmalate synthase and l-threonine dehydratase, to abolish the competing pathways, the l-valine titer reached 4.61 g/L in shake flask cultures. Our engineered l-valine-overproducing strains of B. subtilis are devoid of plasmids and do not sporulate due to the inactivation of sigF, encoding the sporulation-specific transcription factor σ , making them attractive for large-scale l-valine production. However, acetate dissimilation was identified as limiting l-valine overproduction in ΔpdhA B. subtilis strains, and improving acetate dissimilation or identifying alternate modes of increasing pyruvate pools to enhance l-valine-overproduction should be explored.
枯草芽孢杆菌由于其遗传可操作性、“一般认为安全 (GRAS)”状态和稳健的生长特性,已被广泛应用于工业酶生产。尽管它是生物制造平台的理想选择,但枯草芽孢杆菌在生产其他增值生化产品方面的应用有限。在这里,我们报告了使用我们最近开发的 CRISPR(成簇规律间隔短回文重复)-Cas9(CRISPR 相关 [蛋白] 9)工具包,对枯草芽孢杆菌进行工程菌株改造以生产 L-缬氨酸的方法。我们首先通过解除转录和变构调节来操纵天然 L-缬氨酸生物合成途径,与野生型菌株相比,L-缬氨酸的产量提高了 14 倍以上。随后,我们确定并消除了限制 L-缬氨酸过量生产的因素,特别是增加丙酮酸的可用性并阻断竞争的 L-亮氨酸和 L-异亮氨酸生物合成途径。通过失活(a)编码丙酮酸脱氢酶复合物 E1α 亚基的 pdhA,以增加细胞内丙酮酸池,和(b)失活分别编码 2-异丙基苹果酸合酶和 L-苏氨酸脱水酶的 leuA 和 ilvA,以消除竞争途径,L-缬氨酸的产量在摇瓶培养中达到 4.61 g/L。我们构建的枯草芽孢杆菌 L-缬氨酸高产工程菌株不含质粒,由于编码孢子特异性转录因子 σ 的 sigF 的失活,它们不产孢子,使其成为大规模生产 L-缬氨酸的理想选择。然而,在ΔpdhA 枯草芽孢杆菌菌株中,鉴定出乙酸分解代谢是限制 L-缬氨酸过量生产的因素,应该探索改善乙酸分解代谢或寻找增加丙酮酸池的替代方式来提高 L-缬氨酸的产量。