Suppr超能文献

基于子结构子序列和交叉注意力机制的药物-靶点相互作用预测

Prediction of drug-target interactions based on substructure subsequences and cross-public attention mechanism.

作者信息

Shi Haikuo, Hu Jing, Zhang Xiaolong, Jin Shuting, Xu Xin

机构信息

Jing Hu, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei, China.

出版信息

PLoS One. 2025 May 30;20(5):e0324146. doi: 10.1371/journal.pone.0324146. eCollection 2025.

Abstract

Drug-target interactions (DTIs) play a critical role in drug discovery and repurposing. Deep learning-based methods for predicting drug-target interactions are more efficient than wet-lab experiments. The extraction of original and substructural features from drugs and proteins plays a key role in enhancing the accuracy of DTI predictions, while the integration of multi-feature information and effective representation of interaction data also impact the precision of DTI forecasts. Consequently, we propose a drug-target interaction prediction model, SSCPA-DTI, based on substructural subsequences and a cross co-attention mechanism. We use drug SMILES sequences and protein sequences as inputs for the model, employing a Multi-feature information mining module (MIMM) to extract original and substructural features of DTIs. Substructural information provides detailed insights into molecular local structures, while original features enhance the model's understanding of the overall molecular architecture. Subsequently, a Cross-public attention module (CPA) is utilized to first integrate the extracted original and substructural features, then to extract interaction information between the protein and drug, addressing issues such as insufficient accuracy and weak interpretability arising from mere concatenation without interactive integration of feature information. We conducted experiments on three public datasets and demonstrated superior performance compared to baseline models.

摘要

药物-靶点相互作用(DTIs)在药物发现和药物重新利用中起着关键作用。基于深度学习的药物-靶点相互作用预测方法比湿实验室实验更有效。从药物和蛋白质中提取原始特征和子结构特征在提高DTI预测的准确性方面起着关键作用,而多特征信息的整合和相互作用数据的有效表示也会影响DTI预测的精度。因此,我们提出了一种基于子结构子序列和交叉协同注意力机制的药物-靶点相互作用预测模型SSCPA-DTI。我们将药物SMILES序列和蛋白质序列作为模型的输入,采用多特征信息挖掘模块(MIMM)来提取DTIs的原始特征和子结构特征。子结构信息提供了对分子局部结构的详细见解,而原始特征增强了模型对整体分子结构的理解。随后,利用交叉公共注意力模块(CPA)首先整合提取的原始特征和子结构特征,然后提取蛋白质和药物之间的相互作用信息,解决了仅通过连接而没有特征信息的交互式整合所导致的准确性不足和解释性弱等问题。我们在三个公共数据集上进行了实验,并证明了与基线模型相比具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/12124583/90d7fba326f3/pone.0324146.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验