Suppr超能文献

一种在自我调节脑机接口任务开始时选择肌电污染脑电图通道的新方法。

A Novel Technique for Selecting EMG-Contaminated EEG Channels in Self-Paced Brain-Computer Interface Task Onset.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jul;26(7):1353-1362. doi: 10.1109/TNSRE.2018.2847316.

Abstract

Electromyography artifacts are a well-known problem in electroencephalography studies [brain-computer interfaces (BCIs), brain mapping, and clinical areas]. Blind source separation (BSS) techniques are commonly used to handle artifacts. However, these may remove not only the EMG artifacts but also some useful electroencephalography (EEG) sources. To reduce this useful information loss, we propose a new technique for statistically selecting EEG channels that are contaminated with class-dependent EMG (henceforth called EMG-CCh). The EMG-CCh is selected based on the correlation between EEG and facial EMG channels. They were compared (using a Wilcoxon test) to determine whether the artifacts played a significant role in class separation. To ensure that the promising results are not due to the weak EMG removal, reliability tests were done In our data set, the comparison results between BSS artifact removal applied in two ways, to all channels and only to EMG-CCh showed that ICA, PCA, and BSS-CCA can yield significantly better ( ) class separation with the proposed method (79% of the cases for ICA, 53% for PCA, and 11% for BSS-CCA). With BCI competition data, we saw improvement in 60% of the cases for ICA and BSS-CCA. The simple method proposed in this paper showed improvement in class separation with both our data and the BCI competition data. There are no existing methods for removing EMG artifacts based on the correlation between the EEG and EMG channels. Also, the EMG-CCh selection can be used on its own or it can be combined with pre-existing artifact handling methods. For these reasons, we believe that this method can be useful for other EEG studies.

摘要

肌电图伪影是脑电图研究[脑-机接口(BCI)、脑映射和临床领域]中众所周知的问题。盲源分离(BSS)技术常用于处理伪影。然而,这些技术不仅可能去除肌电图伪影,还可能去除一些有用的脑电图(EEG)源。为了减少这种有用信息的丢失,我们提出了一种新的技术,用于从受类依赖肌电图(后文简称 EMG-CCh)污染的 EEG 通道中进行统计选择。根据 EEG 和面部肌电图通道之间的相关性,选择 EMG-CCh。使用 Wilcoxon 检验对其进行比较,以确定这些伪影是否在分类分离中起重要作用。为了确保有前景的结果不是由于肌电图去除能力较弱所致,对数据进行了可靠性测试。在我们的数据集里,将 BSS 伪影去除应用于两种方式(应用于所有通道和仅应用于 EMG-CCh)的比较结果表明,ICA、PCA 和 BSS-CCA 可以通过所提出的方法获得显著更好的()分类分离(ICA 情况下为 79%,PCA 情况下为 53%,BSS-CCA 情况下为 11%)。使用 BCI 竞赛数据,我们看到 ICA 和 BSS-CCA 的情况有 60%得到了改善。本文提出的简单方法在我们的数据和 BCI 竞赛数据中都提高了分类分离的性能。没有基于 EEG 和 EMG 通道之间相关性的去除肌电图伪影的现有方法。此外,EMG-CCh 的选择可以单独使用,也可以与现有的伪影处理方法结合使用。基于这些原因,我们相信这种方法对于其他 EEG 研究可能会有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验