Suppr超能文献

掩蔽发声任务(声音意象)与运动意象在真实生活中在线自我调节脑机接口启动检测中的比较。

Comparison between covert sound-production task (sound-imagery) vs. motor-imagery for onset detection in real-life online self-paced BCIs.

机构信息

BCI-Neural Engineering Group - School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK.

出版信息

J Neuroeng Rehabil. 2020 Feb 7;17(1):14. doi: 10.1186/s12984-020-0651-4.

Abstract

BACKGROUND

Even though the BCI field has quickly grown in the last few years, it is still mainly investigated as a research area. Increased practicality and usability are required to move BCIs to the real-world. Self-paced (SP) systems would reduce the problem but there is still the big challenge of what is known as the 'onset detection problem'.

METHODS

Our previous studies showed how a new sound-imagery (SI) task, high-tone covert sound production, is very effective for onset detection scenarios and we expect there are several advantages over most common asynchronous approaches used thus far, i.e., motor-imagery (MI): 1) Intuitiveness; 2) benefits to people with motor disabilities and, especially, those with lesions on cortical motor areas; and 3) no significant overlap with other common, spontaneous cognitive states, making it easier to use in daily-life situations. The approach was compared with MI tasks in online real-life scenarios, i.e., during activities such as watching videos and reading text. In our scenario, when a new message prompt from a messenger program appeared on the screen, participants watching a video (or reading text, browsing images) were asked to open the message by executing the SI or MI tasks, respectively, for each experimental condition.

RESULTS

The results showed the SI task performed statistically significantly better than the MI approach: 84.04% (SI) vs 66.79 (MI) True-False positive rate for the sliding image scenario, 80.84% vs 61.07% for watching video. The classification performance difference between SI and MI was found not to be significant in the text-reading scenario. Furthermore, the onset response speed showed SI (4.08 s) being significantly faster than MI (5.46 s). In terms of basic usability, 75% of subjects found SI easier to use.

CONCLUSIONS

Our novel SI task outperforms typical MI for SP onset detection BCIs, therefore it would be more easily used in daily-life situations. This could be a significant step forward for the BCI field which has so far been mainly restricted to research-oriented indoor laboratory settings.

摘要

背景

尽管脑机接口领域在过去几年中迅速发展,但它仍然主要作为研究领域进行研究。为了将脑机接口推向现实世界,需要提高其实用性和可用性。自定步速(SP)系统将减少这个问题,但仍然存在所谓的“起始检测问题”这一巨大挑战。

方法

我们之前的研究表明,一种新的声音想象(SI)任务,即高音隐蔽声音产生,对于起始检测场景非常有效,并且我们预计它具有许多优于迄今为止使用的大多数常见异步方法的优势,即运动想象(MI):1)直观性;2)对运动障碍患者,特别是皮质运动区受损的患者有益;3)与其他常见的自发认知状态没有明显重叠,因此更容易在日常生活情况下使用。该方法与在线现实生活场景中的 MI 任务进行了比较,即在观看视频和阅读文本等活动中。在我们的场景中,当消息提示出现在屏幕上时,观看视频(或阅读文本、浏览图像)的参与者分别被要求通过执行 SI 或 MI 任务来打开消息,对于每个实验条件。

结果

结果表明,SI 任务的表现明显优于 MI 方法:滑动图像场景的真阳性率为 84.04%(SI)比 66.79%(MI),观看视频的真阳性率为 80.84%比 61.07%。在阅读文本场景中,未发现 SI 和 MI 之间的分类性能差异具有统计学意义。此外,SI 的起始响应速度(4.08 s)明显快于 MI(5.46 s)。在基本可用性方面,有 75%的受试者认为 SI 更容易使用。

结论

我们的新型 SI 任务在 SP 起始检测脑机接口中优于典型的 MI,因此它更容易在日常生活情况下使用。这可能是脑机接口领域的一个重大进展,迄今为止,该领域主要限于研究导向的室内实验室环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/7006387/0a5129d1c9b7/12984_2020_651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验