Suppr超能文献

神经影像学结果表明,预测在跨领域启动中起作用。

Neuroimaging results suggest the role of prediction in cross-domain priming.

机构信息

Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, 07743, Jena, Germany.

Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.

出版信息

Sci Rep. 2018 Jul 9;8(1):10356. doi: 10.1038/s41598-018-28696-0.

Abstract

The repetition of a stimulus leads to shorter reaction times as well as to the reduction of neural activity. Previous encounters with closely related stimuli (primes) also lead to faster and often to more accurate processing of subsequent stimuli (targets). For instance, if the prime is a name, and the target is a face, the recognition of a persons' face is facilitated by prior presentation of his/her name. A possible explanation for this phenomenon is that the prime allows predicting the occurrence of the target. To the best of our knowledge, so far, no study tested the neural correlates of such cross-domain priming with fMRI. To fill this gap, here we used names of famous persons as primes, and congruent or incongruent faces as targets. We found that congruent primes not only reduced RT, but also lowered the BOLD signal in bilateral fusiform (FFA) and occipital (OFA) face areas. This suggests that semantic information affects not only behavioral performance, but also neural responses in relatively early processing stages of the occipito-temporal cortex. We interpret our results in the framework of predictive coding theories.

摘要

刺激的重复不仅会导致反应时间缩短,还会导致神经活动减少。以前遇到过密切相关的刺激(启动刺激)也会导致后续刺激(目标刺激)的处理更快,而且通常更准确。例如,如果启动刺激是一个名字,而目标刺激是一张脸,那么在呈现这个人的名字之前,他/她的脸的识别会得到促进。对于这种现象的一种可能解释是,启动刺激允许预测目标的出现。据我们所知,到目前为止,还没有研究使用 fMRI 来测试这种跨领域启动的神经相关性。为了填补这一空白,我们在这里使用名人的名字作为启动刺激,并用一致或不一致的面孔作为目标刺激。我们发现,一致的启动刺激不仅缩短了反应时间,还降低了双侧梭状回(FFA)和枕叶(OFA)面孔区的 BOLD 信号。这表明语义信息不仅会影响行为表现,还会影响枕颞叶皮层的相对早期处理阶段的神经反应。我们在预测编码理论的框架内解释我们的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验