Suppr超能文献

基于多时相 Sentinel-2 图像的新型植被指数用于区分水稻重金属胁迫水平。

A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice.

机构信息

School of Information Engineering, China University of Geosciences, Beijing 100083, China.

出版信息

Sensors (Basel). 2018 Jul 6;18(7):2172. doi: 10.3390/s18072172.

Abstract

Heavy metal stress in crops is a worldwide problem that requires accurate and timely monitoring. This study aimed to improve the accuracy of monitoring heavy metal stress levels in rice by using multiple Sentinel-2 images. The selected study areas are in Zhuzhou City, Hunan Province, China. Six Sentinel-2 images were acquired in 2017, and heavy metal concentrations in soil were measured. A novel vegetation index called heavy metal stress sensitive index (HMSSI) was proposed. HMSSI is the ratio between two red-edge spectral indices, namely the red-edge chlorophyll index () and the plant senescence reflectance index (PSRI). To demonstrate the capability of HMSSI, the performances of and PSRI in discriminating heavy metal stress levels were compared with that of HMSSI at different growth stages. Random forest (RF) was used to establish a multitemporal monitoring model to detect heavy metal stress levels in rice based on HMSSI at different growth stages. Results show that HMSSI is more sensitive to heavy metal stress than and PSRI at different growth stages. The performance of a multitemporal monitoring model combining the whole growth stage images was better than any other single growth stage in distinguishing heavy metal stress levels. Therefore, HMSSI can be regarded as an indicator for monitoring heavy metal stress levels with a multitemporal monitoring model.

摘要

重金属胁迫是一个全球性问题,需要进行准确、及时的监测。本研究旨在通过使用多景 Sentinel-2 图像来提高水稻重金属胁迫水平监测的准确性。选择的研究区域位于中国湖南省株洲市。在 2017 年获取了 6 景 Sentinel-2 图像,并测量了土壤中的重金属浓度。提出了一种新的植被指数,称为重金属胁迫敏感指数(HMSSI)。HMSSI 是两个红边光谱指数(即红边叶绿素指数()和植物衰老反射指数(PSRI))的比值。为了验证 HMSSI 的性能,比较了在不同生长阶段和 PSRI 区分重金属胁迫水平的性能。随机森林(RF)被用于建立一个多时相监测模型,基于不同生长阶段的 HMSSI 来检测水稻中的重金属胁迫水平。结果表明,HMSSI 在不同的生长阶段比和 PSRI 对重金属胁迫更敏感。结合整个生长阶段图像的多时相监测模型的性能优于任何其他单一生长阶段,在区分重金属胁迫水平方面表现更好。因此,HMSSI 可以作为一个指标,用于结合多时相监测模型来监测重金属胁迫水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9663/6069287/730be518a564/sensors-18-02172-g001.jpg

相似文献

2
Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images.
Sci Total Environ. 2018 Oct 1;637-638:18-29. doi: 10.1016/j.scitotenv.2018.04.415. Epub 2018 May 5.
3
Identifying rice stress on a regional scale from multi-temporal satellite images using a Bayesian method.
Environ Pollut. 2019 Apr;247:488-498. doi: 10.1016/j.envpol.2019.01.024. Epub 2019 Jan 22.
4
Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images.
Int J Environ Res Public Health. 2022 Feb 23;19(5):2567. doi: 10.3390/ijerph19052567.
5
Developing a New Spectral Index for Detecting Cadmium-Induced Stress in Rice on a Regional Scale.
Int J Environ Res Public Health. 2019 Nov 29;16(23):4811. doi: 10.3390/ijerph16234811.
6
10
[Heavy Metal Contamination of Soils and Crops near a Zinc Smelter].
Huan Jing Ke Xue. 2017 Oct 8;38(10):4360-4369. doi: 10.13227/j.hjkx.201704140.

引用本文的文献

1
Remote sensing-based detection of brown spot needle blight: a comprehensive review, and future directions.
PeerJ. 2025 May 22;13:e19407. doi: 10.7717/peerj.19407. eCollection 2025.
3
Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images.
Int J Environ Res Public Health. 2022 Feb 23;19(5):2567. doi: 10.3390/ijerph19052567.
4
Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography.
Front Plant Sci. 2021 Jan 27;11:609155. doi: 10.3389/fpls.2020.609155. eCollection 2020.
5
Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress.
Plants (Basel). 2020 Dec 25;10(1):33. doi: 10.3390/plants10010033.
7
8
A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis.
Int J Environ Res Public Health. 2019 Jan 26;16(3):350. doi: 10.3390/ijerph16030350.

本文引用的文献

2
Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.
Int J Environ Res Public Health. 2016 Jun 18;13(6):606. doi: 10.3390/ijerph13060606.
3
Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.
J Hazard Mater. 2016 May 5;308:243-52. doi: 10.1016/j.jhazmat.2016.01.022. Epub 2016 Jan 21.
4
Visible and near-infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals.
J Hazard Mater. 2014 Jan 30;265:166-76. doi: 10.1016/j.jhazmat.2013.11.059. Epub 2013 Dec 7.
5
Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content.
Sensors (Basel). 2011;11(7):7063-81. doi: 10.3390/s110707063. Epub 2011 Jul 8.
6
Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh.
Chemosphere. 2007 Apr;67(6):1072-9. doi: 10.1016/j.chemosphere.2006.11.061. Epub 2007 Jan 19.
7
Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.).
Environ Pollut. 2007 Jul;148(1):301-11. doi: 10.1016/j.envpol.2006.10.023. Epub 2006 Dec 22.
8
Mapping heavy metals in polluted soil by disjunctive kriging.
Environ Pollut. 1996;94(2):205-15. doi: 10.1016/s0269-7491(96)00060-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验