Suppr超能文献

结构健康监测传感器网络的成本效益优化。

Cost⁻Benefit Optimization of Structural Health Monitoring Sensor Networks.

机构信息

Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

ETH Zürich, Institut für Baustatik und Konstruktion Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland.

出版信息

Sensors (Basel). 2018 Jul 6;18(7):2174. doi: 10.3390/s18072174.

Abstract

Structural health monitoring (SHM) allows the acquisition of information on the structural integrity of any mechanical system by processing data, measured through a set of sensors, in order to estimate relevant mechanical parameters and indicators of performance. Herein we present a method to perform the cost⁻benefit optimization of a sensor network by defining the density, type, and positioning of the sensors to be deployed. The effectiveness (benefit) of an SHM system may be quantified by means of information theory, namely through the expected Shannon information gain provided by the measured data, which allows the inherent uncertainties of the experimental process (i.e., those associated with the prediction error and the parameters to be estimated) to be accounted for. In order to evaluate the computationally expensive Monte Carlo estimator of the objective function, a framework comprising surrogate models (polynomial chaos expansion), model order reduction methods (principal component analysis), and stochastic optimization methods is introduced. Two optimization strategies are proposed: the maximization of the information provided by the measured data, given the technological, identifiability, and budgetary constraints; and the maximization of the information⁻cost ratio. The application of the framework to a large-scale structural problem, the Pirelli tower in Milan, is presented, and the two comprehensive optimization methods are compared.

摘要

结构健康监测 (SHM) 通过处理通过一组传感器测量的数据,允许获取任何机械系统结构完整性的信息,以便估计相关的机械参数和性能指标。在此,我们提出了一种通过定义要部署的传感器的密度、类型和定位来执行传感器网络成本效益优化的方法。SHM 系统的有效性(效益)可以通过信息论来量化,即通过所测量数据提供的预期香农信息增益,这允许考虑实验过程中的固有不确定性(即与预测误差和要估计的参数相关的不确定性)。为了评估目标函数的计算成本高昂的蒙特卡罗估计器,引入了一个包含替代模型(多项式混沌展开)、模型降阶方法(主成分分析)和随机优化方法的框架。提出了两种优化策略:给定技术、可识别性和预算限制,最大化所测量数据提供的信息量;以及最大化信息成本比。该框架在米兰的 Pirelli 塔等大型结构问题中的应用,以及两种综合优化方法的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a96/6068495/2a7937e122f3/sensors-18-02174-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验